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Abstract

After vanilla options the first generation exotics account for the majority of the turnover of foreign
exchange options. These are essentially digital options and all kind of barrier options such as single
and double barrier options, single and double one-touch and no-touch options and corridor options.
Here we present a formula catalogue for computing the theoretical value (T'V) of such options in the
Black-Scholes model.
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1 Introduction

The pricing and hedging of the first generation exotic options in the Black—Scholes model is well under-
stood. One takes a geometric Brownian motion with a risk-neutral drift and computes the discounted
expected value of the respective option payoffs. This requires usually merely knowing a suitable proba-
bility density function, such as the joint density for the final time value and the maximum of a Brownian
motion with drift. Computing the expectation results in the so-called theoretical value (T'V) of the option.
Although hardly any exotics trade at their theoretical value, this quantity is still a widely used reference
value, and the market price of exotics is often computed as a sum of the theoretical value and a (possibly
negative) adjustment. Here we outline the valuation of some of the most commonly used exotics: single
barrier options in Section 2, digital options in Section 3, one-touch options in Section 4, double no-touch
options in Section 5, corridors in Section 6, double barrier options in Section 7, fade-in-out options in
Section 8, and slide-in corridors in Section 9. We will also illustrate how to handle different dates for
the valuation of an option and the premium payment as well as different dates for the maturity and the
delivery.

2 Single barrier options

In the model

dSt = St[<’l°d — Tf)dt =+ O'th] (1)

we consider the payoff for single barrier knock-out options

[¢(ST - K)}+Z[{n3t>nB,0§t§T}a (2)

where as usual the binary variable ¢ takes the values +1 for a call and —1 for a put, the binary variable
7 takes the values +1 if the barrier B is approached from above (down-and-out) and —1 if the barrier is
approached from below (up-and-out). The strike is denoted by K and the maturity by 7. Current time
is denoted by t. The domestic and foreign interest rates are denoted by rq and r; respectively and the
volatility by o. To price knock-in options paying

[¢(ST - K)]+H{min[n5t]<nB} (3)
we use the fact that

kick-in + knock-out = vanilla. (4)

We denote the current value of the spot S; by x and use the abbreviations listed in Table 1.
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Table 1: Abbreviations used for the pricing formulas of single barrier options

2.1 Value

Computing the value of a barrier option in the Black-Scholes model boils down to knowing the joint
density f(x,y) for a Brownian motion with drift and its running extremum (n = +1 for a maximum and
n = —1 for a minimum),

(W) +0-7n min v )+ 0-01). )

which is derived, e.g., in [4], and can be written as

f($’y):_nee - l02T2(2y_x) Xp{_w}v

TonT oT
ny < min(0, ).

Using the density (6) the value of a barrier option can be written as the following integral

barrier(Sy, o,rq,r¢, K, B,T) = el R [[(;S(ST — K)]+I{nst>nB,O§t§T}} (7)
_ —rdT/ [(b(Soeaz _ K)]+ H{ny>n% logsﬁ}f(x’y) dy dx. (8)
=—o0 Jny<min(0,nx) 0

Further details on how to evaluate this integral can be found in [4]. It produces four terms. We provide
the four terms and summarize in Table 2 how they are used to find the value function.
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option type ¢ 7 | in/out | reverse combination
standard up-and-in call +1 | -1 -1 K>B Ay
reverse up-and-in call +1 | -1 -1 K<B Ay — A3+ Ay
reverse up-and-in put -1 -1 -1 K>B Al — Ay + Ay
standard up-and-in put -1 -1 -1 K<B As
standard down-and-in call | +1 | +1 -1 K>B As
reverse down-and-in call +1 | +1 -1 K<B A — Ay + Ay
reverse down-and-in put -1 +1 -1 K>B Ay — A3+ Ay
standard down-and-in put | —1 | +1 -1 K<B Ay
standard up-and-out call +1 | -1 +1 K>B 0

reverse up-and-out call +1 | -1 +1 K<B| A —Ay+ A3 — Ay

reverse up-and-out put -1 -1 +1 K>B Ay — Ay
standard up-and-out put -1 -1 +1 K<B Ay — Ag
standard down-and-out call | +1 | +1 +1 K>B Al — Aj
reverse down-and-out call +1 | +1 +1 K<B Ay — Ay

reverse down-and-out put -1 +1 +1 K>B | A —Ay+ As — Ay

standard down-and-out put | —1 | +1 +1 K<B 0

Table 2: The summands for the value of single barrier options

Ay = ¢zfN(¢X) — ¢KdN(¢(X — o/T))
Ay = ¢zfN(¢x1) — dKdN (¢(z1 — ov/T))

a = o(2) [xf (5)2N(ny)—KdN(n(y—oﬁ))]
a= o (B [xf (f)2N(ny1)—KdN(n(y1—aﬁ))]

5(2) 3w ot (2 niwnrzfovs
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2.2 Greeks
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2.2.3 Theta
A = —sonfn(X)/VT + 6rfN(GX)rs — SKAN(G(X — ov/)ra (25)
A = —Lowfnl@)K/(BVR) + b N (6m)rs — oKAN (9(a — o)
—zfn(z1)zy:/(27) (26)
2
te = =o(2) wmgo/vT
2A—-2 2
+o(2) [rfxf (2) N(ny)—mKdN(n(y—Uﬁ))] (27)
2\
A= =0 (2) agmton) o/ + JoR /(B
2A—2 2
ro(2) [rfxf (2) N(nyn—rdkdjv(n(yl—oﬁ>>1 (29)
2.2.4 Vega
A = i)V (29)
Ay = afn(z)(VT—112/0) (30)
22—-2 [ 2
Bo=o(2) | (3) N(ny)—KdN(n(y—aﬁ))] (31)
i 2)
A3 = U;llog(f> (Tde)BSJr(ﬁ(f) zfm(y)vV'n (32)
22—-2 [ 2
Bo= o(2) e (2) N(nyn—KdN(n(yl—aﬁ))] (33)
Ay = ?log(f) (ra —ry)Ba
2
+o(2) afmin) |7 - /o) + 7] (39

2.3 Description via partial differential equation

We can describe a barrier option’s value function also as a solution to a partial differential equation
setup. Let v(t,x) denote the value of the option at time ¢ when the underlying is at . Then v(¢,z) is
the solution of

w
ot
=

1
v+ (rg —rf)avg + 50%2@” —rqv = 0, te€][0,T], nz > nB, (

U(T,$) = [(b(l’*K)]Jra nx > nB, (
o(t,B) = 0, te0,T). (

w W
~N
—_
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2.4 Exponential barriers

We generalize the payoff to

[¢(ST — K)] " I (ys,5nB(1),0<t<T} 5 (38)
where the time-dependent barrier takes the exponential form
B(t) = Be™. (39)
The value function for the option with exponential barrier can be written as

ExpBarrier(So, o,7q4,75, K, B,7,T)
= e "B (¢St — K)TI{,s,508().0<t<T}]
6_7'dT]E’ I:[¢(S()60'WT+HT _ K)]+][{nsoe”wt+“‘>n35wvOStST}]

== ei(rdi’\/)TE |:[¢(SO€UWT+(M7’Y)T - K@i’yT)]+ﬂ-{nserWt+(#*’Y)t>nB’OStST}

= Dbarrier(Sy, 0,74 —,7¥, Ke " B, T). (40)
Derivatives with respect to Sy, o,74,7f, B can instantly be taken from the function barrier, even higher
order derivatives. Computing theta requires some caution, because T enters the function barrier also in
the discounting factor for the strike.
3 Digital options
Digital options have a payoff

v(T) = IH4s,>¢k} cash-or-nothing, (41)
w(T)

STl (45, >4} asset-or-nothing. (42)

In the cash-or-nothing case the payment of the fixed amount is in domestic currency, whereas in the
asset-or-nothing case the payment is in foreign currency. We use the abbreviations

F 2 E[S7|S; = 2] = ze("™ "7 (forward price of the underlying) (43)
g 2 In ;”(J—i\—/;@iT _ In %ﬁ";T’ (44)
dy EY hlfw(a_\/;eﬂ—’ (45)
and obtain for the value functions
v(x, K,T,t,0,rq,7f,¢) = e "N (pd_), (46)

w(x, K7 T7t707 Tdarfu ¢) = xe—TfTN(¢d+)' (47)
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Dual Delta
v _oon(d-)
- _ rqT YO\ —) 2
0K ¢ Kov/T (62)
ow  _oen(d)
axk - ¢ o (63)
Dual Gamma
*v n(d_)
— —TaT _ _ 4
0K? ve K202%7 (o7 —d-) (64)
0w n(d_)d_
— _ —TadT
0K? pe Ko?r (65)
Dual Theta
v
87 = —U (66)
3.2 Foreign-domestic symmetry
One can directly verify the relationship
1 11
Ev(xa Ka T» tv O,Td,Tf, d)) = ’LU(;, ?7 Ta ta O, Tf,Td, 7(725) (67)

The reason is that the value of an option can be computed both in a domestic as well as in a foreign sce-
nario. We consider the example of S; modeling the exchange rate of EUR/USD. In New York, the cash-or-
nothing digital call option costs v(x, K, T,t, 0, rysd, Feur, 1) USD and hence v(x, K,T,t, 0, rusd, Feur, 1)/
EUR. If it ends in the money, the holder receives 1 USD. For a Frankfurt-based holder of the same option,
receiving one USD means receiving asset-or-nothing, where he uses reciprocal values for spot and strike
and for him domestic currency is the one that’s foreign to the New Yorker and vice versa. Since S; and
S% have the same volatility, the New York value and the Frankfurt value must agree, which leads to (67).

3.3 Relationship between cash, asset and vanilla

The simple equation of payoffs
$(w(T) — Kv(T)) = [¢(ST — K)|* (68)
leads to the formula
vanilla(z, K, T,t,0,rq,7¢,¢)
= ¢lw(z,K,T,t,0,rq,75,0) — Kv(z, K,T,t,0,rq,7f,9)]. (69)

3.4 Static hedge using vertical spreads

The mathematical derivative of the positive part function

Tipsizorc) = lim 5 [(6(Sr — (K = 60))* = (8(Sr — (K + 69))"] (70)



10 Ghislain Perissé et al.

leads to an approximate static hedge (and hence price)
’U(iL’,K, T,t,O’, Td,Tf,¢) ~ (71)

1
% [vanilla(z, K — ¢¢, T, t,0,rq,7,¢) — vanilla(z, K + ¢¢, T, t, 0,7q,7¢, 9)]
€

for small € > 0. In practice, arbitrarily small € corresponds to arbitrarily large nominal amounts of
the vanilla options and can thus not be chosen arbitrarily small. Furthermore, there will be different
volatilities for the bid and ask price of the vanilla options, which lead to a more realistic pricing for
digital options using this approximation.

3.4.1 Greeks in the static hedge

Static hedges normally perform well hedging the actual model variable risk like delta, gamma and theta.
In this static hedge even the model parameter uncertainty vega is hedged. The hedge vega is given by

n(dy %) — n(d5 o)

VTwe T , (72)
2€
mE+or
dK é K 2 73
+ 0’\/; ( )
Replacing the difference quotient by its derivative at K we obtain
dK—¢>e _ dK—l—qSe
ﬁaze‘r”n( s 7)) —nldy 7T (74)
2¢
—1
~ T on(dy)dy ———= 75
PV/TTe n(dy) T Kor (75)
d
= —¢ge " n(d_)—, (76)

g

which is the vega of the digital option.

3.5 Handling different dates for valuation, payment, expiry and delivery for
digital options with two barriers

Generally pricing foreign exchange options requires handling different dates for valuation, payment, expiry
and delivery. We denote these by ¢, t +T),, T, and Ty respectively. The valuation date ¢ is also called the
horizon.

Let us consider different interest rates for the respective time intervals, i.e., let

. rf” be the interest rate between ¢ and t + T},
. rtT ° be the interest rate between ¢ and ¢ + T, where the spot is modeled by
dS’t = ,U/tStdt + O'tStdW (77)

. A d f
with py = rtTE — r?“ , and

e /% be the interest rate between t and t + T.

We consider a generalized payoff of the digital option by taking both a lower barrier L and an higher
barrier H,

Iip<s:, <ny- (78)
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3.5.1 Pricing

On [t,T], the price of the option is
Tp _,T _
’U(t) =e"t TpEt e L (T t)‘”{LSSTeSH}} s (79)

where
Sy, = Spelre=300)Temt)toWe (80)

And the symbol IE* means the expectation based on the information available up to time ¢. Computing
the integral yields

o(t) = e T 0 (V (dy) — N (dir)) (81)
with
A 1 S 1 5
d, = In{ = — T, —t 2
2 () o) o).
A 1 S 1
2 In (=2 ~o? ) (T, —
di o Te_t<n<H)+(ut+20t>( e t)) (83)
On [T, Ty] the price is
U(t) = ertTpr_Td(Td_t),l[{LSSTeSH}. (84)
4 One-touch options
We consider now options paying
RIltrp<ry, (8)
75 2 inf{t > 0: 1S, < nB}. (86)

This type of option pays a domestic cash amount R if a barrier B is hit any time before expiry. We use
the binary variable n to describe whether B is a lower barrier (n = 1) or an upper barrier (n = —1). The
stopping time 75 is called the first hitting time. The option can be either viewed as the rebate portion of
a knock-out barrier option or as an American cash-or-nothing digital option. It is also sometimes called
one-touch option, one-touch-digital or hit option. The modified payoff RI,,>r} describes a rebate which
is being paid if a knock-in-option has not knocked in by the time it expires and can be valued similarly
simply by exploiting the identity

RE{TB <7} + RI{‘/’BZT} = R. (87)

We will further distinguish whether the rebate is paid at hit (w = 0) or at end (w = 1) and use the
abbreviations

9 2 /02 4201 —w)ry, (88)
A TFlogg —od_7

= o\ T
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4.1 Pricing

The value of the one-touch option turns out to be

0_+9_ 6_ —9_

o(t,x) = Re—“raT <B> ’ N(ne+)+<x) T N@eo)| . (90)

x
Note that ¥_ = |#_| for rebates paid at end (w = 1).

4.2 Greeks
4.2.1 Delta

) == (E) T 0+ 0N ) + Tonles)]
+(2) (6=~ 0N (e + “ntes)]| (91)
422 Theta
) = anatt) + (YT e ()T e
e+ T (BY T g (B). @

The computation exploits the identities (109), (110) and (111) derived below.

4.2.3 Gamma

Gamma can be obtained using v, = # rqu — vy — (rqg — 7f)2v;] and turns out to be

el = % (93)
(lj) - N(-ne4) [Td(l — ) (rg — T.f)e_iﬁ_]
+ (f) == N(ne-) [m(l — W)+ (ra— rf)e—;ﬂ—}
+7 (f) == nle.) [_67— n Ti\/;f]

() ol
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4.2.4 Vega
To compute vega we use the identities
00_ 04
- - _* 4
do o’ (94)
09 _ 0_6,
oo o’ (95)
Oey logZ 6.6,
T L%
do o2\/T T VT (96)
A O 0_+9_ 1 0_6,
A, = "~ "= = ___ _+ -
RERAL . [9++9 (ﬂ +9 )} (o7)
and obtain
Vo (t,x) = Re " (98)
6_+9_
B 7 Oe
o _ ALl 2 ot
(2) 7 [wenenasion (2) - mien 5]
0_ —9_
B 7 B Ode_
— A1 — = 7.
(&) e () emic )
4.3 Knock-out probability
The risk-neutral probability of knocking out is given by
1
Plrp < T = I [I1r,<7}] = e (0, 5). (99)
4.4 Properties of the first hitting time 75
As derived, e.g., in [4], the first hitting time
FRf{t>0:0t+W(t) =} (100)
of a Brownian motion with drift § and hit level x > 0 has the density
_ x (x — 0t)? }
P|T € dt] = e ———— 5 dt, t>0, 101
Fea= ——ew{-C5 (101)
the cumulative distribution function
0t —x —0t—x
PlF<t]l=N | —= +29ffj\/<>, t >0, 102
Pi=n (57 +e Vi 1oz
the Laplace-transform
Fe %" = exp {3:9 —xV2a+ 92} , a>0, x>0, (103)

and the property
~ 1 if6>0
P[7 < o0] = . (104)

e ifg <0
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For upper barriers B > Sy we can now rewrite the first passage time 75 as

5 = inf{t>0:5, =B}
= inf{tZO:Wt+9_t log<5))}. (105)
The density of 75 is hence
P[rp € dt] = #L(S%) exp —(% o8 (S%) — o8 , t>0. (106)
tv/2nt 2t

4.5 Derivation of the value function

Using the density (106) the value of the paid-at-end (w = 1) upper rebate (n = —1) option can be written
as
v(T,S) = Re "I [Ii,<7}] (107)
7 Llog (s%) (X log (s%) —0_1)2
= Re T / ————2 exp{ — dt.
0 t\/ 21t 2t

To evaluate this integral, we introduce the notation

A *log % —o00_t

sl 2 ZEE (108)
and list the properties
e -eslt) = 2210 (B ) (109)
n(es(t) = ( ) e (1)), (110)
dex(t)
o 2t ' (111)

We evaluate the integral in (107) by rewriting the integrand in such a way that the coefficients of the
exponentials are the inner derivatives of the exponentials using properties (109),(110) and (111),

/T Llog (%) N (X log (%) —0_t)? »
0

t/2rt Py ot

1 B |
_ Jlog(s())/o (e (1) d

= [ gl ie(®) = ex0)

20_

_ /0 n(e,(t))egff) + (g)an(e+(t))62§f) it

260

B o
- <SO> N(es(T)) + N(—e_(T)). (112)

The computation for lower barriers (n = 1) is similar.
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5 Double no-touch options

We use the notation of Section 3.5. A double no-touch option pays off

H{Lgmin[oyTe] Sy<max(o, T, Si<H} (113)
5.1 Pricing
On [t, 7], the price of the option is

Tp _Tq _
’U(t) — et TpEt e Tt (T4 t)H{LSmiﬂ[o,Tg] Si<max(o. 1, ] StSH}:| , (114)

on [7’, Td]7
Tp 0 _
U(t) = €7t Tp d(Td t)‘l[{LSmin[O,Te] St<maX[D,T€] StSH}' (115)

To compute the expectation, let us introduce the stopping time

72 min {inf {t € [0,T.]|S; = L or S, = H},T.} (116)
and the notation
_ _ 1.2
g & M- TR% (117)
g
- 1. H
h 2 “ln— 11
g nSt ( 8)
~ A 1 L
[ 2 “In— 11
g nSt ( 9)
A ~
0 2 0JT.—t (120)
ho2 h/T.—t (121)
I 2 T, —¢ (122)
Yo 2 2n(h—1)—0 (123)
A 1 2
2 exp [ —— ). 124
mle) 2 e (-5 (124)

The joint distribution of the maximum and the minimum of a Brownian motion can be taken from [1]
and is given by

h
P [Zg min W, < max W, < B} = / kr(x) da (125)
[0,7] [0,7] 7
with
krz) = Y [nT(I +on(h — 1) — nr(x — 2h + 2n(h — 1)) . (126)

Hence the joint density of the maximum and the minimum of a Brownian motion with drift 0, Wf 2

Wy + 60t, is given by

kS (x) = kp(z) exp {éx - ;éQT} : (127)
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We obtain for the price of the option on [¢, 7]

T
p
Tt

_ Ty—rq(Tqg—t
’U(t) = € p=ra(Ta )I{Lgmin[oﬁfpe] Sy<maxo,1,] St<H}

T,
— eTt prde(Tdft) - _ P
{I<ming, 1, W <max(g,r,) W <h}

, ho
_ 6T?pr7Td(Td7t) z k(GTe—t) (:L')dl‘ (128)

T T
= ertpr*Ttd(Td*t)

oo

) Z {672n0(h*l) {N (h+yn) —N(l +yn)}

n—=—oo

20200 N7 (9 4 y) — N (1 —2h+yn)}]

and on [, Ty]

Tp
_ oy Tp—ra(Tg—t
'U(t) —et P a(Ta )E{Lﬁmin[oje] Sy<max,r,) S¢<H}* (]_29)

6 Corridors

6.1 Corridor of digital options

Let us consider N digital options on the same underlying Sy, with the same barrier levels L and H, and
with the same delivery date Ty. Let us assume that the expiry dates 7! depend on the digital i.
The payoff of the corridor of these N digital options is

N
1
N;I{LSSTQSH}’ (130)
whence the price of the corridor is
1 Ty Ta(r,— i i
o(t) = Ner‘ To=re (=) [(N(dL) — N (dy)) Tgeriy + Mipicsy, <piy I psriy) (131)
with
> o (3 () o)
d, 2 —In (2 + (e — =02 ) (TP - 1)|, 132
b2 e | (3) + (g - (132)
* o () + (gt i)
dy = - In|{—= |+ — —C T —t)]. 133
w2 [ (5) (e o) @ (1)

6.2 Corridor of no-touch options

Let us consider N no-touch options on the same underlying S; with the same barrier levels L and H and
with the same delivery date Ty. Let us assume that the expiry dates T depend on the no-touch option <.
The payoft of the corridor is

1 N

N Z H{Lgmin[O,Tg] St <max[0,T§] St<H}- (134)

i=1

The price of the corridor is now a sum of prices of double-no-touch options with maturities T;.
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7 Double barrier options

A double barrier option is an option which pays off

((b (STe - K))Jr E{L<min[O,Te] StémaX[O,Te] St<H}7 (135)

where K denotes the strike and the notation is the same as in Section 3.5.

7.1 Pricing

The distribution of S, conditioned on not having reached the upper barrier H and the lower barrier L
is

2 ST,
e—%/\ (Te=t)+3 In - %

i" L ex —; lnsTe—&—innE :
Var | TP\ T2 — o M s, 7

n=—oo

! L :
— X — n n—
PN — ey s s TN L

A

Iipcs, <my

(136)

with

1>
SHERS

o
- —. 1
: (137)
To price the option, let us introduce the stopping time
72 min {inf {t € [0,T,)|S; = L or S, = H},T.} (138)
The price of the option on [t, 7] is
o(t) = T B (6 (1 — K))* I (1 <oming, 5. <maxgny 5.<11) | (139)
and on [, Ty]
v(t) = 0. (140)

First we consider the case of a call option (¢ = 1), where we need to evaluate

U(t) = e ' (Teit)Et |:(STE - K)+ E{L<min[t)Tc] Ss<max[s 1, SS<H}:|

= e "Te (Te—t)

xIE" [(STC = K) I <sp<my I {n<ming, 1,1 S, <maxq z,, SS<H}}

H
e—rTe(Te—t)/ (St _K)e_%AZ(Te—t)Jrgln
K

f L ex 7; lnsT"‘qLQnIHE i
V2r P 202(T, — t) S; L

n=—oo

1 H? H\?
—exp | - 1 min=) ||dP
eXp( 202(T, — 1) (rlks*TestJr " nL) )] T

+oo

= T N (S,(QF - Q) — K (P — PyY), (141)

n—=—oo

ST,
St

X
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using the notation

and

>

Py
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1>
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1>
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1 —INH(To—t)+22/Te—tx— 3 (x—2Ag—2nAry)?
e 2 2 dx
A V21

_ EAm(zLAHHnALH)Jrg,\?(TFt)
x {N (—(AH F2nAL g+ 20/T, — t))
-N (AK — (AT, — t+ 245 + 2nALH))} ,

A
E / ) L AN AT e (et 2nALn)? g,
e Vo
A
= / ’ LQ*QHAALH\/Tei*ei%(zf()‘m72nALH))2d$
o Vo
_ e_)\m(27LALH)
W o
-N (AK —MT. —t+ Q”ALH) } ’

>

An
/ L ()Tt Y (a—240—2mAL0)? g,

A V2w
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(142)
(143)
(144)

(145)

(146)

(147)

(148)

(149)
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We obtain for the price of the call option on [t, 7]

+oo
v(t) = e ' (Te—t) {St [ Z e—/\\/Te—t(4nALH)+%)\2(Te—t)
n=—oo
X {N (AH — 2A\/ Te —t + QHALH) —N (AK — 2)\\/ Te —t + QTZALH)}
+oo
_ Z e)n/Te77t(4AH+4nALH)+%)\2(TE—t)

<AV (=(Ar + 2040 + 22T = 1) = N (A = CAVT. = £+ 245 + A1) ) }]

- K [ +§ e~ MWTe—t(2nArLm)
x {/\;(AH T, — i+ 2nALH) N (AK MWT, =i+ 2nALH)}

+oo
E e)\\/Te—t(QAH—‘rQ'rLALH)

n=-—oo

X {N (—(AH +2nArg + M/ Te — t)) - N (AK -~ (AT, —t+2Ag + 2nALH)> H}
(

150)

and zero otherwise.

Similarly we obtain for the price of the put (¢ = 1)

v(t) = e T (Te—1) [t [(K — ST5)+ H{L<min[t,Te] Se<max,. 1] SS<H}}

+oo
e~ e (Te=t) {K [ Z e~ WT—t(2nALw)

n=—oo

x {N (AK T =i+ 2nALH) N (AL “MWT, =i+ 2nALH)}

+oo
_ Z e)\\/cht(2AH+2nALH)

n=—oo

x {N (AK — (2Ay + 2nALy + A\/ﬁ)) N (AL —(MWTe —t 424 + 2nALH)) H

+oo
_S, [ Z e—)u/;Te—t(4nALH)+%)\2(Te—t)

n=—oo

x {N (AK oA, —t+ 2nALH) N (AL T, —t+ 2nALH)}

“+oo
. Z AVTe —t(4An+AnApg)+ 3N (T.—t)

n=—oo

< {N (4K = @An + Ay + 22T =) = N (AL = @A/ — ¢+ 245 + 2041m) ) ]}

(151)
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8 Fade-in-out options
A double barrier fade-in option with fixing date T pays off

(6 (S, — K)) " I L cming 1, S, <maxo.z,; Si<H} I {Fp<Srp <Fur}s (152)
where K denotes the strike, L and H the lower and higher barrier respectively, and Fj, and Fy the lower
and higher fixing levels respectively.

8.1 Pricing

To price the option, let us look at its value at the fixing date Tr,

0(Tr) = " T0 b0 (Tp) I {5y < S0y < Far) (153)

with the non-discounted price of the double knockout vpxo. The price for t < T is hence

U(t) = e_rd(Td_t)Et _(¢ (ST - K))+ ][{L<min[o,Te] Sy<max[o, 1] St<H}E{FL<STF<FH}:|

_ ra(Ta—t) ot | +
- € d( ¢ )E (¢ (ST - K)) E{L<min[t,TF] St/gmax“,TF] St’ <H} X

I{L<min[TF,Te] Si<max|rp 1, St <H}][{FL <StTp<Fu}

_ e—T’d(Td—t)Et

I 1 <xming, gy So<maxgy 1) Se<HY (P <S0,, <FH}'UDKO(TF)}

Fy
e~ Ta(Ta—t) D(L,H, St )vpro(Tr) dSt,., (154)
Fr

where the density of St not having reached the barriers L, H under Qr,. is given by

D(L,H,Sr,) =
e—%A2(Tp—t)+§lnSSLtF y
+oo 2
1 1 St H
— —— (1 <+ 2nln —
n;oo Nor [eXp< 202(T, — 1) (n g, T L) )
1 H? H\?
— — | 2nln — I
exp ( 202(T, — 1) <H 7.5 +2nin L) ) {L<Sr <H}
(155)
with
W o
A== ——. 1
e (156)
9 Slide-in corridor
The slide-in corridor is an option paying
1N
N > Mip<s,<my (St —K)©, (157)

i=1
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where K denotes the strike, L and H the lower and higher barrier respectively and T; < Ty the N + 1
working dates and delivery date respectively. Let ¢ be the valuation date (horizon) and assume that the
premium is paid at the premium value date ¢ + T},. Furthermore, we specify different interest rates for

different time intervals, i.e., let
e 7, be the interest rate between ¢ and t + T},
e 7; be the interest rate between ¢ and T},
° rzd be the interest rate between T; and T.

Let the spot be modeled by
dSt = ,qutdt + O'iStdW on [t,Ti]

with 1; 2 rd — rlf and o; the forward volatility of the asset on [t, T;], and

dSy = ! Sydt + o} S dW on [T, Ty)

df

with ug 2 ry — rzf " and 03 the forward volatility of the underlying on [T}, T}].

9.1 Pricing

The theoretical value of the option can be written as

N
o(t) = enTrr T gt H > Mizesy, <y (#(Sr - K)ﬁ]
. i=1
> E [ET [”{LSSTiSH} (¢ (St — K))JFH

i

rpTp—rd(T—t)

=z

= €

Il
—

rpTp—r (T —t)

==
e

s
Il
—

FE' [E{LSSTiSH}ETi [(¢ (St — K))Jr”

= €

with
S = Ste(.ui_%U?)(Ti_t)‘f‘O’qﬂWTi—t

and

>

d, = w%(ln(i)+(ui—;af)(Ti— )>,

w2 (o) o )nn)

The inner expectation can be written in terms of the value function of a vanilla options, i.e.,

1>

BT [(6(5r— K))7] = 65ne TN (6 (S1)) - 6KN (9a(51.)

dt(T—T;)

= el Vo (STNK? (T_TZ))

with

>

1 ST. + 1 T2
A 1 J 4+ —g! T-T,
di(ST,) UIM<H<K>+<M+ oz)( z)),
dy(St,) dy —ol\/T T,

(158)

(159)

(160)

(161)

(162)

(163)

(164)

(165)

(166)
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and where V (St,, K, (T — T;)) denotes the value function of a plain vanilla option with spot St,, strike
K and maturity (T — T;). To integrate on Wy, _, let W, _4 be & and St, = St,(x). This implies for the
value of the slide-in corridor

N dy ;
o(t) = eTPTp“T”}V; /d ) (651, (@)e T=TON (g1 (S, (2))) — OKN (9da(S1, (2))) )

1 22
X EG_T dz. (167)

References

[1] REvUZ, D. and YOR, M. (1995). Continuous Martingales and Brownian Motion. Second Edition.
Springer.

[2] Rich, D. (1994). The Mathematical Foundations of Barrier Option Pricing Theory. Advances in
Futures and Options Research T

[3] REINER, E. and RUBINSTEIN, M. (1991). Breaking down the Barriers. Risk 4(8), 28-35.
[4] SHREVE, S.E. (1996). Stochastic Calculus and Finance. Lecture notes, Carnegie Mellon University

[5] WysTup, U (2000). The MathFinance Formula Catalogue. http://www.mathfinance.de


http://www.mathfinance.de

Index

barrier options, 2

corridor of no-touch options, 16
corridors, 16

delivery date, 10

digital options, 7

digital options with two barriers, 10
double barrier fade-in option, 20
double barrier options, 17

double no-touch options, 15

expiry date, 10
exponential barriers, 7

first generation exotics, 1
first hitting time, 11

hit option, 11
horizon, 10

one-touch option, 11
premium payment date, 10
rebates, 11

single barrier option, 2
slide-in corridor, 20

theoretical value, 2
time-dependent barriers, 7
TV, 2

valuation date, 10

23



	Introduction
	Single barrier options
	Value
	Greeks
	Delta
	Gamma
	Theta
	Vega

	Description via partial differential equation
	Exponential barriers

	Digital options
	Greeks
	Foreign-domestic symmetry
	Relationship between cash, asset and vanilla
	Static hedge using vertical spreads
	Greeks in the static hedge

	Handling different dates for valuation, payment, expiry and delivery for digital options with two barriers
	Pricing


	One-touch options
	Pricing
	Greeks
	Delta
	Theta
	Gamma
	Vega

	Knock-out probability
	Properties of the first hitting time B
	Derivation of the value function

	Double no-touch options
	Pricing

	Corridors
	Corridor of digital options
	Corridor of no-touch options

	Double barrier options
	Pricing

	Fade-in-out options
	Pricing

	Slide-in corridor
	Pricing


