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Abstract The foreign exchange options market is one of the largest and most liquid

OTC derivative markets in the world. Surprisingly, very little is known in the aca-

demic literature about the construction of the most important object in this market:

The implied volatility smile. The smile construction procedure and the volatility

quoting mechanisms are FX specific and differ significantly from other markets. We

give a detailed overview of these quoting mechanisms and introduce the resulting

smile construction problem. Furthermore, we provide a new formula which can be

used for an efficient and robust FX smile construction.

Keywords: FX Quotations, FX Smile Construction, Risk Reversal, Butterfly, Stran-

gle, Delta Conventions, Malz Formula

Dimitri Reiswich

Frankfurt School of Finance & Management, Centre for Practical Quantitative Finance, e-mail:

d.reiswich@frankfurt-school.de

Uwe Wystup

Frankfurt School of Finance & Management, Centre for Practical Quantitative Finance, e-mail:

uwe.wystup@mathfinance.com

1

d.reiswich@frankfurt-school.de
uwe.wystup@mathfinance.com


2 Dimitri Reiswich, Uwe Wystup

1 Delta– and ATM–Conventions in FX-Markets

1.1 Introduction

It is common market practice to summarize the information of the vanilla options

market in the volatility smile table which includes Black-Scholes implied volatili-

ties for different maturities and moneyness levels. The degree of moneyness of an

option can be represented by the strike or any linear or non-linear transformation

of the strike (forward-moneyness, log-moneyness, delta). The implied volatility as

a function of moneyness for a fixed time to maturity is generally referred to as the

smile. The volatility smile is the crucial object in pricing and risk management pro-

cedures since it is used to price vanilla, as well as exotic option books. Market par-

ticipants entering the FX OTC derivative market are confronted with the fact that the

volatility smile is usually not directly observable in the market. This is in opposite

to the equity market, where strike-price or strike-volatility pairs can be observed.

In foreign exchange OTC derivative markets it is common to publish currency pair

specific risk reversal σRR, strangle σST R and at-the-money volatility σAT M quotes

as given in the market sample in Table 1. These quotes can be used to construct a

Table 1: FX Market data for a maturity of 1 month, as of January, 20th 2009

EURUSD USDJPY

σAT M 21.6215% 21.00%

σRR −0.5% −5.3%

σST R 0.7375% 0.184%

complete volatility smile from which one can extract the volatility for any strike. In

the next section we will introduce the basic FX terminology which is necessary to

understand the following sections. We will then explain the market implied infor-

mation for quotes such as those given in Table 1. Finally, we will propose an implied

volatility function which accounts for this information.

1.2 Spot, Forward and Vanilla Options

FX Spot Rate St

The FX spot rate St =FOR-DOM represents the number of units of domestic cur-

rency needed to buy one unit of foreign currency at time t. For example, EUR-

USD= 1.3900 means that one EUR is worth 1.3900 USD. In this case, EUR is the
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foreign currency and USD is the domestic one. The EUR-USD= 1.3900 quote is

equivalent to USD-EUR 0.7194. A notional of N units of foreign currency is equal

to NSt units of domestic currency (see also Wystup (2006)). The term “domestic”

does not refer to any geographical region. The domestic currency is also referred to

as the numeraire currency (see Castagna (2010)).

FX Outright Forward Rate f (t,T )

By far the most popular and liquid hedge contract for a corporate treasurer is the

outright forward contract. This contract trades at time t at zero cost and leads to an

exchange of notionals at time T at the pre-specified outright forward rate f (t,T ).
At time T , the foreign notional amount N would be exchanged against an amount

of N f (t,T ) domestic currency units. The outright forward is related to the FX spot

rate via the spot-rates parity

f (t,T ) = St · e(rd−r f )τ , (1)

where

r f is the foreign interest rate (continuously compounded),

rd is the domestic interest rate (continuously compounded),

τ is the time to maturity, equal to T − t.

FX Forward Value

At inception an outright forward contract has a value of zero. Thereafter, when mar-

kets move, the value of the forward contract is no longer zero but is worth

v f (t,T ) = e−rdτ ( f (t,T )−K) = Ste
−r f τ −Ke−rdτ (2)

for a pre-specified exchange rate K. This is the forward contract value in domestic

currency units, marked to the market at time t.

FX Vanilla Options

In foreign exchange markets options are usually physically settled, i.e. the buyer of

a EUR vanilla call (USD Put) receives a EUR notional amount N and pays N ×K

USD, where K is the strike. The value of such a vanilla contract is computed with

the standard Black-Scholes formula

v(St ,K,σ ,φ) = v(St ,rd ,r f ,K,σ , t,T,φ)

= φ [e−r f τ St N(φd+) − e−rdτ K N(φd−)] (3)
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= φe−rdτ [ f (t,T ) N(φd+) − K N(φd−)],

where

d± =
ln
(

f (t,T )
K

)

± 1
2
σ2τ

σ
√

τ

K : strike of the FX option,

σ : Black-Scholes volatility,

φ = +1 for a call ,φ = −1 for a put,

N(x) : cumulative normal distribution function.

We may drop some of the variables of the function v depending on context. The

Black-Scholes formula renders a value v in domestic currency. An equivalent value

of the position in foreign currency is v/St . The accounting currency (the currency

in which the option values are measured) is also called the premium currency.

The notional is the amount of currency which the holder of an option is entitled

to exchange. The value formula applies by default to one unit of foreign notional

(corresponding to one share of stock in equity markets), with a value in units of

domestic currency. An example which illustrates these terms follows. Consider a

EUR-USD call with a spot of S0 = 1.3900, a strike of K = 1.3500 and a price of

0.1024 USD. If a notional of 1,000,000 EUR is specified, the holder of the option

will receive 1,000,000 EUR and pay 1,350,000 USD at maturity and the option’s

current price is 102,400 USD (73,669 EUR).

1.3 Delta Types

The delta of an option is the percentage of the foreign notional one must buy when

selling the option to hold a hedged position (equivalent to buying stock). For in-

stance, a delta of 0.35 = 35% indicates buying 35% of the foreign notional to delta-

hedge a short option. In foreign exchange markets we distinguish the cases spot

delta for a hedge in the spot market and forward delta for a hedge in the FX forward

market. Furthermore, the standard delta is a quantity in percent of foreign currency.

The actual hedge quantity must be changed if the premium is paid in foreign cur-

rency, which would be equivalent to paying for stock options in shares of stock. We

call this type of delta the premium-adjusted delta. In the previous example the value

of an option with a notional of 1,000,000 EUR was calculated as 73,669 EUR.

Assuming a short position with a delta of 60% means, that buying 600,000 EUR is

necessary to hedge. However the final hedge quantity will be 526,331 EUR which

is the delta quantity reduced by the received premium in EUR. Consequently, the

premium-adjusted delta would be 52.63%. The following sections will introduce the

formulas for the different delta types. A detailed introduction on at-the-money and

delta conventions which we used as an orientation can be found in Beier and Renner

(2010). Related work, which is worth reading and describes the standard conven-
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tions can also be found in Beneder and Elkenbracht-Huizing (2003), Bossens et al.

(2009), Castagna (2010), Clark (forthcoming).

Unadjusted Deltas

Spot Delta

The sensitivity of the vanilla option with respect to the spot rate St is given as

∆S(K,σ ,φ)
∆
=

∂v

∂S
= vS. (4)

Standard calculus yields

∆S(K,σ ,φ) = φe−r f τ N(φd+), (5)

Put-call delta parity: ∆S(K,σ ,+1)−∆S(K,σ ,−1) = e−r f τ . (6)

In equity markets, one would buy ∆S units of the stock to hedge a short vanilla

option position. In FX markets, this is equivalent to buying ∆S times the foreign

notional N. This is equivalent to selling of ∆S ×N × St units of domestic currency.

Note that the absolute value of delta is a number between zero and a discount factor

e−r f τ < 100%. Therefore, 50% is not the center value for the delta range.

Forward Delta

An alternative to the spot hedge is a hedge with a forward contract. The number

of forward contracts one would buy in this case differs from the number of units in

a spot hedge. The forward-hedge ratio is given by

∆ f (K,σ ,φ)
∆
=

∂v

∂v f

=
∂v

∂S

∂S

∂v f

=
∂v

∂S

(

∂v f

∂S

)−1

= φN(φd+), (7)

Put-call delta parity: ∆ f (K,σ ,+1)−∆ f (K,σ ,−1) = 100%. (8)

In the hedge, one would enter ∆ f ×N forward contracts to forward-hedge a short

vanilla option position. The forward delta is often used in FX options smile tables,

because of the fact that the delta of a call and the (absolute value of the) delta of the

corresponding put add up to 100%, i.e. a 25-delta call must have the same volatility

as a 75-delta put. This symmetry only works for forward deltas.

Premium Adjusted Deltas

Premium-Adjusted Spot Delta

The premium-adjusted spot delta takes care of the correction induced by payment
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of the premium in foreign currency, which is the amount by which the delta hedge

in foreign currency has to be corrected. The delta can be represented as

∆S, pa
∆
= ∆S −

v

S
. (9)

In this hedge scenario, one would buy N(∆S − v
St

) foreign currency units to hedge

a short vanilla position. The equivalent number of domestic currency units to sell is

N(St∆S − v). To quantify the hedge in domestic currency we need to flip around the

quotation and compute the dual delta

∂ v
S

in FOR

∂ 1
S

in FOR per DOM
= DOM to buy

=
∂ v

S

∂S
· ∂S

∂ 1
S

=
SvS − v

S2
·
(

∂ 1
S

∂S

)−1

=
SvS − v

S2
·
(

− 1

S2

)−1

= −(SvS − v) DOM to buy = SvS − v DOM to sell = vS −
v

S
FOR to buy,

which confirms the definition of the premium-adjusted delta in Equation (9). We

find

∆S, pa(K,σ ,φ) = φe−r f τ K

f
N(φd−), (10)

Put-call delta parity: ∆S, pa(K,σ ,+1)−∆S, pa(K,σ ,−1) = e−r f τ K

f
. (11)

Note that

φe−r f τ K

f
N(φd−) = FOR to buy per 1 FOR

φe−rdτ KN(φd−) = DOM to sell per 1 FOR

−φe−rdτ KN(φd−) = DOM to buy per 1 FOR

−φe−rdτ N(φd−) = DOM to buy per 1 DOM

= vK = the dual delta,

which is the strike-coefficient in the Black-Scholes Formula (3). It is now appar-

ent that this can also be interpreted as a delta, the spot delta in reverse quotation

DOM-FOR. For the premium-adjusted delta the relationship strike versus delta is

not injective: for a given delta there might exist more than one corresponding strike.

This is shown in Figure (1).
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Premium-Adjusted Forward Delta

50 100 150 200
K

0.2

0.4

0.6

0.8

1.0

D

vHKL

S Spot p.a.

Spot 50 100 150 200
K

-1.5

-1.0

-0.5

D

Spot p.a.

Spot

Fig. 1: Premium-adjusted and standard call (left chart) and put (right chart) spot delta, St = 100, τ = 1.0, rd = 0.03,

r f = 0.0, σ = 0.2.

As in the case of a spot delta, a premium payment in foreign currency leads to

an adjustment of the forward delta. The resulting hedge quantity is given by

∆ f , pa(K,σ ,φ) = φ
K

f
N(φd−), (12)

Put-call delta parity: ∆ f , pa(K,σ ,+1)−∆ f , pa(K,σ ,−1) =
K

f
. (13)

Note again that the premium-adjusted forward delta of a call is not a monotone

function of the strike.

Delta Conventions for Selected Currency Pairs

This section is based on Ian Clark’s summary of current FX market conventions (see

Clark (forthcoming)). The question which of the deltas is used in practice cannot

be answered systematically. Both, spot and forward deltas are used, depending on

which product is used to hedge. Generally, forward hedges are popular to capture

rates risk besides the spot risk. So naturally, forward hedges come up for delta-one-

similar products or for long-term options. In practice, the immediate hedge executed

is generally the spot-hedge, because it has to be done instantaneously with the option

trade. At a later time the trader can change the spot hedge to a forward hedge using

a zero-cost FX swap.

Forward delta conventions are normally used to specify implied volatilities be-

cause of the symmetry of put and call deltas adding up to 100%. Using forward

deltas as a quotation standard often depends on the time to expiry T and the pres-

ence of an emerging market currency in the currency pair. If the currency pair does

contain an emerging market currency, forward deltas are the market default. If the

currency pair contains only currencies from the OECD economies (USD, EUR, JPY,
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GBP, AUD, NZD, CAD, CHF, NOK, SEK, DKK), and does not include ISK, TRY,

MXN, CZK, KRW, HUF, PLN, ZAR or SGD, then spot deltas are used out to and

including 1Y. For all longer dated tenors forward deltas are used. An example: the

NZD-JPY uses spot deltas for maturities below 1 year and forward deltas for maturi-

ties above 1 year. However, for the CZK-JPY currency pair forward deltas are used

in the volatility smile quotation(see Clark (forthcoming)). The premium-adjusted

delta as a default is used for options in currency pairs whose premium currency is

FOR. We provide examples in Table 2. The market standard is to take the more

Table 2: Selected currency pairs and their default premium currency determining the delta type. Source: Clark (forth-

coming)

Currency Pair Premium Currency Delta Convention

EUR-USD USD regular

USD-JPY USD premium-adjusted

EUR-JPY EUR premium-adjusted

USD-CHF USD premium-adjusted

EUR-CHF EUR premium-adjusted

GBP-USD USD regular

EUR-GBP EUR premium-adjusted

AUD-USD USD regular

AUD-JPY AUD premium-adjusted

USD-CAD USD premium-adjusted

USD-BRL USD premium-adjusted

USD-MXN USD premium-adjusted

commonly traded currency as the premium currency. However, this does not apply

to the JPY. Virtually all currency pairs involving the USD will have the USD as the

premium currency of the contract. Similarly, contracts on a currency pair including

the EUR - and not the USD - will be denoted in EUR. A basic premium currency

hierarchy is given as (Clark (forthcoming))

USD � EUR � GBP � AUD � NZD � CAD � CHF

� NOK,SEK,DKK

� CZK,PLN,TRY,MXN � JPY � . . . (14)

Exceptions may occur, so in case of doubt it is advisable to check.

1.4 At-The-Money Definitions

Defining at-the-money (ATM) is by far not as obvious as one might think when first

studying options. It is the attempt to specify the middle of the spot distribution in

various senses. We can think of
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ATM-spot K = S0

ATM-fwd K = f

ATM-value-neutral K such that call value = put value

ATM-∆ -neutral K such that call delta = − put delta.

In addition to that, the notion of ATM involving delta will have sub-categories de-

pending on which delta convention is used. ATM-spot is often used in beginners’

text books or on term sheets for retail investors, because the majority of market

participants is familiar with it. ATM-fwd takes into account that the risk-neutral ex-

pectation of the future spot is the forward price (1), which is a natural way of spec-

ifying the “middle”. It is very common for currency pairs with a large interest rate

differential (emerging markets) or long maturity. ATM-value-neutral is equivalent

to ATM-fwd because of the put-call parity. Choosing the strike in the ATM-delta-

neutral sense ensures that a straddle with this strike has a zero spot exposure which

accounts for the traders’ vega-hedging needs. This ATM convention is considered

as the default ATM notion for short-dated FX options. We summarize the various

at-the-money definitions and the relations between all relevant quantities in Table 3.

Table 3: ATM Strike values and delta values for the different delta conventions. Source: Beier and Renner (2010)

ATM ∆ -neutral Strike ATM fwd Strike ATM ∆ -neutral Delta ATM fwd Delta

Spot Delta f e
1
2 σ2τ f 1

2
φe−r f τ φe−r f τ N(φ 1

2
σ
√

τ)

Forward Delta f e
1
2 σ2τ f 1

2
φ φN(φ 1

2
σ
√

τ)

Spot Delta p.a. f e−
1
2 σ2τ f 1

2
φe−r f τ e−

1
2 σ2τ φe−r f τ N(−φ 1

2
σ
√

τ)

Forward Delta p.a. f e−
1
2 σ2τ f 1

2
φe−

1
2 σ2τ φN(−φ 1

2
σ
√

τ)

1.5 Delta–Strike Conversion

Professional FX market participants have adapted specific quoting mechanisms

which differ significantly from other markets. While it is common in equity mar-

kets to quote strike-volatility or strike-price pairs, this is usually not the case in

FX markets. Many customers on the buy-side receive implied volatility-delta pairs

from their market data provider. This data is usually the result of a suitable cali-

bration and transformation output. The calibration is based on data which has the

type shown in Table 1. The market participant is then confronted with the task to

transform volatility-delta to strike-price pairs respecting FX specific at-the-money
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and delta definitions. This section will outline the algorithms which can be used to

that end. For a given spot delta ∆S and the corresponding volatility σ the strike can

be retrieved with

K = f e−φN−1(φe
r f τ

∆S)σ
√

τ+ 1
2 σ2τ . (15)

The equivalent forward delta version is

K = f e−φN−1(φ∆ f )σ
√

τ+ 1
2 σ2τ . (16)

Conversion of a Premium-Adjusted Forward Delta to Strike

For a premium-adjusted forward delta the relationship between delta and strike

∆ f , pa(K,σ ,φ) = φ
K

f
N(φd−) = φ

K

f
N



φ
ln
(

f
K

)

− 1
2
σ2τ

σ
√

τ



 ,

can not be solved for the strike in closed form. A numerical procedure has to be

used. This is straightforward for the put delta because the put delta is monotone

in strike. This is not the case for the premium-adjusted call delta, as illustrated in

Figure (1). Here, two strikes can be obtained for a given premium-adjusted call delta

(for example for ∆S,pa = 0.2). It is common to search for strikes corresponding to

deltas which are on the right hand side of the delta maximum. This is illustrated as

a shadowed area in the left chart of Figure (2).

50 100 150 200

0.1

0.2

0.3

0.4

0.5

0.6

K

D

50 100 150 200

0.2

0.4

0.6

0.8

1.0

Kmin Kmax K

D

Fig. 2: Strike region for given premium-adjusted delta. St = 100

Consequently, we recommend to use Brent’s root searcher (see Brent (2002)) to

search for K ∈ [Kmin,Kmax]. The right limit Kmax can be chosen as the strike corre-

sponding to the non premium-adjusted delta, since the premium-adjusted delta for a

strike K is always smaller than the simple delta corresponding to the same strike. For

example, if we are looking for a strike corresponding to a premium-adjusted forward

delta of 0.20, we can choose Kmax to be the strike corresponding to a simple forward
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delta of 0.20. The last strike can be calculated analytically using Equation (16). It

is easy to see that the premium-adjusted delta is always below the non-premium-

adjusted one. This follows from

∆S(K,σ ,φ)−∆S, pa(K,σ ,φ) = e−r f τ φN(φd+)−φe−r f τ K

f
N(φd−) ≥ 0

⇔ φ f N(φd+)−φKN(φd−) ≥ 0.

Discounting the last inequality yields the Black-Scholes formula, which is always

positive. The maximum for both, the premium-adjusted spot and premium-adjusted

forward delta, is given implicitly by the equation

σ
√

τN(d−) = n(d−),

with n(x) being the normal density at x. One can solve this implicit equation numer-

ically for Kmin and then use Brent’s method to search for the strike in [Kmin,Kmax].
The resulting interval is illustrated in the right hand side of Figure (2).

Construction of Implied Volatility Smiles

The previous section introduced the FX specific delta and ATM conventions. This

knowledge is crucial to understand the volatility construction procedure in FX mar-

kets. In FX option markets it is common to use the delta to measure the degree

of moneyness. Consequently, volatilities are assigned to deltas (for any delta type),

rather than strikes. For example, it is common to quote the volatility for an option

which has a premium-adjusted delta of 0.25. These quotes are often provided by

market data vendors to their customers. However, the volatility-delta version of the

smile is translated by the vendors after using the smile construction procedure dis-

cussed below. Other vendors do not provide delta-volatility quotes. In this case, the

customers have to employ the smile construction procedure. Related sources cov-

ering this subject can be found in Bossens et al. (2009), Castagna (2010), Clark

(forthcoming).

Unlike in other markets, the FX smile is given implicitly as a set of restrictions

implied by market instruments. This is FX-specific, as other markets quote volatil-

ity versus strike directly. A consequence is that one has to employ a calibration

procedure to construct a volatility vs. delta or volatility vs. strike smile. This section

introduces the set of restrictions implied by market instruments and proposes a new

method which allows an efficient and robust calibration.

Suppose the mapping of a strike to the corresponding implied volatility

K 7→ σ(K)
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is given. We will not specify σ(K) here but treat it as a general smile function for

the moment. The crucial point in the construction of the FX volatility smile is to

build σ(K) such that it matches the volatilities and prices implied by market quotes.

The FX market uses three volatility quotes for a given delta such as ∆ = ±0.25 1:

• an at-the-money volatility σAT M ,

• a risk reversal volatility σ25−RR,

• a quoted strangle volatility σ25−S−Q.

A sample of market quotes for the EURUSD and USDJPY currency pairs is given

in Table 4. Before starting the smile construction it is important to analyze the exact

Table 4: Market data for a maturity of 1 month, as of January, 20th 2009

EURUSD USDJPY

S0 1.3088 90.68

rd 0.3525% 0.42875%

r f 2.0113% 0.3525%

σAT M 21.6215% 21.00%

σ25−RR −0.5% −5.3%

σ25−S−Q 0.7375% 0.184%

characteristics of the quotes in Table 4. In particular, one has to identify first

• which at-the-money convention is used,

• which delta type is used.

For example, Figure (3) shows two market consistent smiles based on the EURUSD

market data from Table 4, assuming that this data refers to different deltas, a sim-

ple or premium-adjusted one. It is obvious, that the smiles can have very differ-

ent shapes, in particular for out-of-the-money and in-the-money options. Misunder-

standing the delta type which the market data refers to would lead to a wrong pricing

of vanilla options. The quotes in the given market sample refer to a spot delta for

the currency pair EURUSD and a premium-adjusted spot delta for the currency pair

USDJPY. Both currency pairs use the forward delta neutral at-the-money quotation.

The next subsections explain which information these quotes contain.

At-the-Money Volatility

After identifying the at-the-money type, we can extract the at-the-money strike

KAT M as summarized in Table 3. For the market sample data in Table 4 the cor-

responding strikes are summarized in Table 5. Independent of the choice of σ(K),

1 We will take a delta of 0.25 as an example, although any choice is possible.
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1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
K0.20

0.21

0.22

0.23

0.24

0.25

0.26

Σ

D Spot p.a.

D Spot

Fig. 3: Smile construction with EURUSD market data from Table 4, assuming different delta types.

Table 5: At-the-money strikes for market sample

EURUSD USDJPY

KAT M 1.3096 90.86

it has to be ensured that the volatility for the at-the-money strike is σAT M . Conse-

quently, the construction procedure for σ(K) has to guarantee that the following

Equation

σ(KAT M) = σAT M (17)

holds. A market consistent smile function σ(K) for the EURUSD currency pair thus

has to yield

σ(1.3096) = 21.6215%

for the market data in Table 4. We will show later how to calibrate σ(K) to re-

trieve σ(K), so assume for the moment that the calibrated, market consistent smile

function σ(K) is given.

Risk Reversal

The risk reversal quotation σ25−RR is the difference between two volatilities:

• the implied volatility of a call with a delta of 0.25 and

• the implied volatility of a put with a delta of −0.25.

It measures the skewness of the smile, the extra volatility which is added to the

0.25∆ put volatility compared to a call volatility which has the same absolute delta.
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Clearly, the delta type has to be specified in advance. For example, the implied

volatility of a USD call JPY put with a premium-adjusted spot delta of 0.25 could

be considered. Given σ(K), it is possible to extract strike-volatility pairs2 for a call

and a put

(

K25C,σ(K25C)
) (

K25P,σ(K25P)
)

which yield a delta of 0.25 and −0.25 respectively:

∆ (K25C,σ(K25C),1) = 0.25

∆ (K25P,σ(K25P),−1) = −0.25

In the equation system above, ∆ denotes a general delta which has to be specified to

∆S,∆S,pa or ∆ f ,∆ f ,pa. The market consistent smile function σ(K) has to match the

information implied in the risk reversal. Consequently, it has to fulfill

σ(K25C)−σ(K25P) = σ25−RR. (18)

Examples of such 0.25 ∆ strike-volatility pairs for the market data in Table 4 and a

calibrated smile function σ(K) are given in Table 6.

For the currency pair EURUSD we can calculate the difference of the 0.25 ∆ call

Table 6: 0.25 ∆ strikes

EURUSD USDJPY

K25C 1.3677 94.10

K25P 1.2530 86.51

σ(K25C) 22.1092% 18.7693%

σ(K25P) 22.6092% 24.0693%

and put volatilities as

σ(1.3677)−σ(1.2530) = 22.1092%−22.6092% = −0.5%

which is consistent with the risk reversal quotation in Table 4. It can also be verified

that

∆S (1.3677,22.1092%,1) = 0.25 and ∆S(1.2530,22.6092%,−1) = −0.25.

2 This can be achieved by using a standard root search algorithm.
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Market Strangle

The strangle is the third restriction on the function σ(K). Define the market strangle

volatility σ25−S−M as

σ25−S−M = σAT M +σ25−S−Q. (19)

For the market sample from Table 4 and the USDJPY case this would correspond to

σ25−S−M = 21.00%+0.184% = 21.184%.

Given this single volatility, we can extract a call strike K25C−S−M and a put strike

K25P−S−M which - using σ25−S−M as the volatility - yield a delta of 0.25 and −0.25

respectively. The procedure to extract a strike given a delta and volatility has been

introduced in Section 1.5. The resulting strikes will then fulfill

∆ (K25C−S−M,σ25−S−M,1) = 0.25 (20)

∆ (K25P−S−M,σ25−S−M,−1) = −0.25. (21)

The strikes corresponding to the market sample are summarized in Table 7. For the

USDJPY case the strike volatility combinations given in Table 7 fulfill

∆S,pa(94.55,21.184%,1) = 0.25 (22)

∆S,pa(87.00,21.184%,−1) = −0.25 (23)

where ∆S,pa(K,σ ,φ) is the premium-adjusted spot delta. Given the strikes K25C−S−M ,

K25P−S−M and the volatility σ25−S−M , one can calculate the price of an option posi-

tion of a long call with a strike of K25C−S−M and a volatility of σ25−S−M and a long

put with a strike of K25P−S−M and the same volatility. The resulting price v25−S−M

is

v25−S−M = v(K25C−S−M,σ25−S−M,1)+ v(K25P−S−M,σ25−S−M,−1) (24)

and is the final variable one is interested in. This is the third information implied

by the market: The sum of the call option with a strike of K25C−S−M and the put

option with a strike of K25P−S−M has to be v25−S−M . This information has to be in-

corporated by a market consistent volatility function σ(K) which can have different

volatilities at the strikes K25C−S−M , K25P−S−M but should guarantee that the corre-

sponding option prices at these strikes add up to v25−S−M . The delta of these options

with the smile volatilities is not restricted to yield 0.25 or −0.25. To summarize,

v25−S−M = v(K25C−S−M,σ(K25C−S−M),1)+v(K25P−S−M,σ(K25P−S−M),−1) (25)

is the last restriction on the volatility smile. Taking again the USDJPY as an example

yields that the strangle price to be matched is

v25−S−M = v(94.55,21.184%,1)+ v(87.00,21.184%,−1) = 1.67072. (26)
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The resulting price v25−S−M is in the domestic currency, JPY in this case. One can

then extract the volatilities from a calibrated smile σ(K) –as in Table 7– and calcu-

late the strangle price with volatilities given by the calibrated smile function σ(K)

v(94.55,18.5435%,1)+ v(87.00,23.7778%,−1) = 1.67072. (27)

This is the same price as the one implied by the market in Equation (26).

Table 7: Market Strangle data

EURUSD USDJPY

K25C−S−M 1.3685 94.55

K25P−S−M 1.2535 87.00

σ(K25C−S−M) 22.1216% 18.5435%

σ(K25P−S−M) 22.5953% 23.7778%

v25−S−M 0.0254782 1.67072

The introduced smile construction procedure is designed for a market that quotes

three volatilities. This is often the case for illiquid markets. It can also be used for

markets where more than three volatilities are quoted on an irregular basis, such that

these illiquid quotes might not be a necessary input.

The Simplified Formula

Very often, a simplified formula is stated in the literature which allows an easy

calculation of the 0.25 delta volatilities given the market quotes. Let σ25C be the call

volatility corresponding to a delta of 0.25 and σ25P the −0.25 delta put volatility.

Let K25C and K25P denote the corresponding strikes. The simplified formula states

that

σ25C = σAT M +
1

2
σ25−RR +σ25−S−Q

σ25P = σAT M − 1

2
σ25−RR +σ25−S−Q. (28)

This would allow a simple calculation of the 0.25∆ volatilities σ25C,σ25P with mar-

ket quotes as given in Table 4. Including the at-the-money volatility would result in

a smile with three anchor points which can then be interpolated in the usual way. In

this case, no calibration procedure is needed. Note, that

σ25C −σ25P = σ25−RR (29)
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such that the 0.25 ∆ volatility difference automatically matches the quoted risk re-

versal volatility. The simplified formula can be reformulated to calculate σ25−S−Q,

given σ25C, σ25P and σAT M quotes. This yields

σ25−S−Q =
σ25C +σ25P

2
−σAT M, (30)

which presents the strangle as a convexity parameter. However, the problem arises

in the matching of the market strangle as given in Equation (24), which we repeat

here for convenience

v25−S−M = v(K25C−S−M,σ25−S−M,1)+ v(K25P−S−M,σ25−S−M,−1).

Interpolating the smile from the three anchor points given by the simplified formula

and calculating the market strangle with the corresponding volatilities at K25P−S−M

and K25C−S−M does not necessary lead to the matching of v25−S−M . The reason why

the formula is stated very often (see for example Malz (1997)) is that the market

strangle matching works for small risk reversal volatilities σ25−RR. Assume that

σ25−RR is zero. The simplified Formula (28) then reduces to

σ25C = σAT M +σ25−S−Q,

σ25P = σAT M +σ25−S−Q.

This implies, that the volatility corresponding to a delta of 0.25 is the same as

the volatility corresponding to a delta of −0.25, which is the same as the mar-

ket strangle volatility σ25−S−M introduced in Equation (19). Assume that in case

of a vanishing risk reversal the smile is built using three anchor points given by

the simplified formula and one is asked to price a strangle with strikes K25C−S−M

and K25P−S−M . Given the volatility σ25C = σAT M + σ25−S−Q and a delta of 0.25

would result in K25C−S−M as the corresponding strike. Consequently, we would as-

sign σAT M + σ25−S−Q to the strike K25C−S−M if we move from delta to the strike

space. Similarly, a volatility of σAT M + σ25−S−Q would be assigned to K25P−S−M .

The resulting strangle from the three anchor smile would be

v(K25C−S−M,σAT M +σ25−S−Q,1)+ v(K25P−S−M,σAT M +σ25−S−Q,−1)

which is exactly the market strangle price v25−S−M . In this particular case, we have

K25C−S−M = K25C,

K25P−S−M = K25P.

Using the simplified smile construction procedure yields a market strangle consis-

tent smile setup in case of a zero risk reversal. The other market matching require-

ments are met by default. In any other case, the strangle price might not be matched

which leads to a non market consistent setup of the volatility smile.

The simplified formula can still be useful, even for large risk reversals, if σ25−S−Q
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is replaced by some other parameter introduced below. This parameter can be ex-

tracted after finishing the market consistent smile construction and is calculated in

a way which is similar to Equation (30). Assume that the 0.25 delta volatilities

σ25C = σ(K25C) and σ25P = σ(K25P) are given by the calibrated smile function

σ(K). We can then calculate another strangle, called the smile strangle via

σ25−S−S =
σ(K25C)+σ(K25P)

2
−σAT M. (31)

The smile strangle measures the convexity of the calibrated smile function and is

plotted in Figure (4). It is approximately the difference between a straight line be-

tween the 25∆ put and call volatilities and the at-the-money volatility, evaluated

at ∆AT M . 3 This is equivalent to Equation (30), but in this case we are using out-
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Fig. 4: Smile strangle for random market data. Filled circles indicate K25P,K25C strikes. Rectangle indicates KAT M .

of-the-money volatilities obtained from the calibrated smile and not from the sim-

plified formula. Given σ25−S−S, the simplified Equation (28) can still be used if

the quoted strangle volatility σ25−S−Q is replaced by the smile strangle volatility

σ25−S−S. Clearly, σ25−S−S is not known a priori but is obtained after finishing the

calibration. Thus, one obtains a correct simplified formula as

σ25C = σAT M +
1

2
σ25−RR +σ25−S−S,

σ25P = σAT M − 1

2
σ25−RR +σ25−S−S. (32)

A sample data example is summarized in Table 8 where we have used the calibrated

smile function σ(K) to calculate the smile strangles σ25−S−S. Given σ25−S−S , σAT M

and σ25−RR, we can calculate the EURUSD out-of-the-money volatilities of the call

and put via the simplified Formula (32) as

3 Here, ∆AT M is the at-the-money delta. The description is exact if we consider the forward delta

case with the delta-neutral at-the-money quotation. In other cases, this is an approximation.
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Table 8: Smile strangle data

EURUSD USDJPY

σ(K25C) 22.1092% 18.7693%

σ(K25P) 22.6092% 24.0693%

σAT M 21.6215% 21.00%

σ25−RR −0.5% −5.3%

σ25−S−S 0.7377% 0.419%

σ25−S−Q 0.7375% 0.184%

σ25C = 21.6215%− 1

2
0.5%+0.7377% = 22.1092%,

σ25P = 21.6215%+
1

2
0.5%+0.7377% = 22.6092%,

which is consistent with the volatilities σ(K25C) and σ(K25P) in Table 8. Note that

the market strangle volatility is very close to the smile strangle volatility in the

EURUSD case. This is due to the small risk reversal of the EURUSD smile. Cal-

culating the 25∆ volatilities via the original simplified Formula (28) would yield a

call volatility of 22.109% and a put volatility of 22.609% which are approximately

the 0.25∆ volatilities of Table 8. However, the smile strangle and quoted strangle

volatilities differ significantly for the skewed JPYUSD smile. Using the original

Formula (28) in this case would result in 18.534% and 23.834% for the 25∆ call

and put volatilities. These volatilities differ from the market consistent 25∆ volatil-

ities given in Table 8.

Simplified Parabolic Interpolation

Various different interpolation methods can be considered as basic tools for the cali-

bration procedure. Potential candidates are the SABR model introduced by Hagan et

al. (2002), or the Vanna Volga method introduced by Castagna and Mercurio (2006).

In this work, we introduce a new method for the smile construction. In a proceeding

paper, we will compare all methods and analyze their calibration robustness empir-

ically. The method introduced below turns out to be the most robust method.

In Malz (1997), the mapping forward delta against volatility is constructed as a

polynomial of degree 2. This polynomial is constructed such that the at-the-money

and risk reversal delta volatilities are matched. Malz derives the following functional

relationship

σ(∆ f ) = σAT M −2σ25−RR(∆ f −0.5)+16σ25−S−Q(∆ f −0.5)2 (33)
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where ∆ f is a call forward delta4. This is a parabola centered at 0.5. The use of this

functional relationship can be problematic due to the following set of problems:

• the interpolation is not a well defined volatility function since it is not always

positive,

• the representation is only valid for forward deltas, although the author incorrectly

uses the spot delta in his derivation (see Equation (7) and Equation (18) in Malz

[1997]),

• the formula is only valid for the forward delta neutral at-the-money quotation,

• the formula is only valid for risk reversal and strangle quotes associated with a

delta of 0.25,

• the matching of the market strangle restriction (25) is guaranteed for small risk

reversals only.

The last point is crucial! If the risk reversal σ25−RR is close to zero, the formula will

yield σAT M +σ25−S−Q as the volatility for the ±0.25 call and put delta. This is con-

sistent with restriction (25). However, a significant risk reversal will lead to a failure

of the formula. We will fix most of the problems by deriving a new, more general-

ized formula with a similar structure. The problem that the formula is restricted to a

specific delta and at-the-money convention can be fixed easily. The matching of the

market strangle will be employed by a suitable calibration procedure. The resulting

equation will be denoted as the simplified parabolic formula.

The simplified parabolic formula is constructed in delta space. Let a general delta

function ∆(K,σ ,φ) be given and KAT M be the at-the-money strike associated with

the given at-the-money volatility σAT M . Let the risk reversal volatility quote corre-

sponding to a general delta of ∆̃ > 0 be given by σ∆̃−RR. For the sake of a com-

pact notation of the formula we will use σR instead of σ∆̃−RR. Furthermore, we

parametrize the smile by using a convexity parameter called smile strangle which

is denoted as σS. This parameter has been discussed before in the simplified formula

section. The following theorem can be stated.

Theorem 1. Let ∆AT M denote the call delta implied by the at-the-money strike

∆AT M = ∆(KAT M,σAT M,1).

Furthermore, we define a variable a which is the difference of a call delta, corre-

sponding to a −∆̃ put delta, and the −∆̃ put delta for any delta type and is given

by

a := ∆(K∆̃P,σ ,1)−∆(K∆̃P,σ ,−1).

Given a call delta ∆ , the parabolic mapping

(∆ ,σS) 7→ σ(∆ ,σS)

which matches σAT M and the σ∆̃−RR risk reversal quote by default is

4 A put volatility can be calculated by transforming the put to a call delta using the put call parity.
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σ(∆ ,σS) = σAT M + c1(∆ −∆AT M)+ c2(∆ −∆AT M)2 (34)

with

c1 =
a2(2σS +σR)−2a(2σS +σR)(∆̃ +∆AT M)+2(∆̃ 2σR +4σS∆̃∆AT M +σR∆ 2

AT M)

2(2∆̃ −a)(∆̃ −∆AT M)(∆̃ −a+∆AT M)

c2 =
4∆̃σS −a(2σS +σR)+2σR∆AT M

2(2∆̃ −a)(∆̃ −∆AT M)(∆̃ −a+∆AT M)
(35)

assuming that the denominator of c1 (and thus c2) is not zero. A volatility for a put

delta can be calculated via the transformation of the put delta to a call delta.

Proof: See Appendix.

We will present σ(∆ ,σS) as a function depending on two parameters only, although

of course more parameters are needed for the input. We consider σS explicitly, since

this is the only parameter not observable in the market. This parameter will be the

crucial object in the calibration procedure. Setting ∆̃ = 0.25, ∆AT M = 0.5 and a = 1

as in the forward delta case, yields the original Malz formula if σS = σ25−S−Q.

The generalized formula can handle any delta (e.g ∆̃ = 0.10), any delta type and

any at-the-money convention. The formula automatically matches the at-the-money

volatility, since

σ(∆AT M,σS) = σAT M

Furthermore, the risk reversal is matched since

σ(∆̃C,σS)−σ(a+ ∆̃P,σS) = σ∆̃−RR

where ∆̃C denotes the call delta and ∆̃P the put delta5.

We have plotted the calibrated strike vs. volatility function in Figure (5) to show the

influence of the parameters σAT M,σR,σS on the simplified parabolic volatility smile

in the strike space. We will explain later how to move from the delta to the strike

space. Increasing σAT M leads to a parallel upper shift of the smile. Increasing σ25RR

yields to a more skewed curve. A risk reversal of zero implies a symmetric smile.

Increasing the strangle σS increases the at-the-money smile convexity. Our final goal

will be the adjustment of the smile convexity by changing σS until condition (25)

is met. The other conditions are fulfilled by default, independent of the choice of σS.

We note that the simplified parabolic formula follows the sticky-delta rule. This

implies, that the smile does not move in the delta space, if the spot changes (see

Balland (2002), Daglish et al. (2007), Derman (1999)). In the strike space, the smile

performs a move to the right in case of an increasing spot, see Figure (6) .

5 a+ ∆̃P is the call delta corresponding to a put delta of ∆̃P. In the forward delta case a = 1. If ∆̃P =
−0.25, the equivalent call delta which enters the simplified parabolic formula is a+ ∆̃P = 0.75.
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Fig. 5: Simplified Parabolic σAT M ,σR,σS spot delta scenarios with τ = 35
365

,S0 = 1.2,rd = 0.03,r f = 0.01, ∆̃ = 0.25.

Initial parameters σAT M = 10.0%, σR = 0.6%, σS = 1.0%.
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Fig. 6: Moving spot scenario for calibrated simplified parabolic formula in strike space. Based on market data in Table 3.

Market Calibration

The advantage of Formula (34) is that it matches the at-the-money and risk reversal

conditions of Equations (17) and (18) by default. The only remaining challenge is

matching the market strangle. The simplified parabolic function can be transformed

from a delta-volatility to a strike-volatility space (which will be discussed later) such

that a function

σ(K,σS)

is available. Using the variable σS as the free parameter, the calibration problem can

be reduced to a search for a variable x such that the following holds

v∆̃−S−M = v(K∆̃C−S−M,σ(K∆̃C−S−M,x),1)

+ v(K∆̃P−S−M,σ(K∆̃P−S−M,x),−1). (36)

This leads to the following root search problem:
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Problem Type: Root search.

Given parameters: v∆̃−S−M ,K∆̃C−S−M ,K∆̃P−S−M and market data.

Target parameter: x (set x initially to σ∆̃−S−Q)

Objective function:

f (x) = v(K∆̃C−S−M ,σ(K∆̃C−S−M ,x),1)+ v(K∆̃P−S−M ,σ(K∆̃P−S−M ,x),−1)− v∆̃−S−M

The procedure will yield a smile strangle which can be used in the simplified

parabolic formula to construct a full smile in the delta space. It is natural to ask,

how well defined the problem above is and whether a solution exists. We will not

present a rigorous analysis of this problem here, but it will be presented in follow-up

research. We will show that a solution exists in a neighborhood of σR = 0 assuming

that a weak condition is fulfilled. However, the neighborhood might be very small

such that no solution for large risk-reversals might be available. The empirical tests

in the following section will show, that the non-existence of such a solution has oc-

curred in the past in very extreme market scenarios.

Performing the calibration on the currency data in Table 4 yields the parameters

summarized in Table 7 for the root search problem. The final calibrated smile for

Table 7: Simplified Parabolic Calibration Results

EURUSD Sample USDJPY Sample

σS 0.007377 0.00419

the JPYUSD case is illustrated in Figure (8).
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Fig. 8: JPYUSD smile for the market data in Exhibit 4. Filled circles indicate K25P,K25C strikes. Unfilled circles indicate

market strangle strikes K25P−S−M ,K25C−S−M . Rectangle indicates KAT M .
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Retrieving a Volatility for a Given Strike

Formula (34) returns the volatility for a given delta. However, the calibration proce-

dure requires a mapping

K 7→ σ(K,σS)

since it needs a volatility corresponding to the market strangle strikes. The transfor-

mation to σ(K,σS) can be deduced by recalling that σ = σ(∆ ,σS) is the volatility

corresponding to the delta ∆ . To be more precise, given that σ is assigned to delta

∆ implies that ∆ = ∆(K,σ ,φ) for some strike K. Consequently, Formula (34) can

be stated as

σ = σAT M + c1(∆(K,σ ,1)−∆AT M)+ c2(∆(K,σ ,1)−∆AT M)2. (37)

Given a strike K, it is thus possible to retrieve the corresponding volatility by

searching for a σ which fulfills Equation (37). This can be achieved by using a

root searcher. We recommend the method introduced by Brent (2002). The question

arises, if such a volatility vs. strike function exists and how smooth it is. The answer

can be given by using the implicit function theorem. In the following discussion we

will avoid the explicit dependence of all variables on (K,σ(K,σS)). For example,

we write
∂∆

∂K
instead of

∂∆

∂K
(x,y)|x=K,y=σ(K,σS)

With this compact notation, we can state the following.

Theorem 2. Given the volatility vs. delta mapping (34), assume that the following

holds

c1
∂∆

∂σ
(KAT M,σAT M) 6= 1

Then there exists a function σ : U →W with open sets U,W ⊆ IR+ such that KAT M ∈
U and σAT M ∈ W which maps the strike implicit in ∆ against the corresponding

volatility. The function is differentiable and has the following first- and second-

order derivatives on U

∂σ

∂K
=

∂∆
∂K

A

1− ∂∆
∂σ

A
(38)

∂ 2σ

∂K2
=

[(

∂ 2∆
∂K2 + ∂ 2∆

∂K∂σ
∂σ
∂K

)

A+ ∂∆
∂K

∂A
∂K

](

1− ∂∆
∂σ

A
)

(

1− ∂∆
∂σ

A
)2

+

∂∆
∂K

A
(

( ∂∆
∂σ∂K

+ ∂ 2∆
∂σ2

∂σ
∂K

)A+ ∂∆
∂σ

∂A
∂K

)

(

1− ∂∆
∂σ

A
)2

(39)

with
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A := c1 +2c2(∆ −∆AT M) and
∂A

∂K
= 2c2

(∂∆

∂K
+

∂∆

∂σ

∂σ

∂K

)

Proof. See Appendix.

Note that Equations (38) and (39) require the values σ(K,σS). In fact, Equa-

tion (38) can be seen as an non-autonomous non-linear ordinary differential equation

for σ(K,σS). However, given σ(K,σS) as a root of Equation (37), we can analyt-

ically calculate both derivatives. Differentiability is very important for calibration

procedures of the well known local volatility models (see Dupire (1994), Derman

and Kani (1994), Lee (2001)), which need a smooth volatility vs. strike function. To

be more precise, given the local volatility SDE

dSt = (rd − r f )Stdt +σ(St , t)dWt

the function σ(K, t) can be stated in terms of the implied volatility (see Andersen

and Brotherton-Ratcliffe (1998), Dempster and Richards (2000)) as

σ2(K,T ) =
2 ∂σ

∂T
+ σ

T−t
+2K(rd − r f )

∂σ
∂K

K2
[

∂ 2σ
∂K2 −d+

√
T − t( ∂σ

∂K
)2 + 1

σ

(

1

K
√

T−t
+d+

∂σ
∂K

)2]
.

The derivatives with respect to the strike can be very problematic if calculated nu-

merically from an interpolation function. In our case, the derivatives can be stated

explicitly, similar to (Hakala and Wystup, 2002, page 254) for the kernel interpo-

lation case. In addition, the formulas are very useful to test for arbitrage, where

restrictions on the slope and convexity of σ(K) are imposed (see for example Lee

(2005)).

We summarize explicit formulas for all derivatives occurring in Equations (38) and

(39) in Tables 10 and 11 in the Appendix. They can be used for derivations of ana-

lytical formulas for the strike derivatives for all delta types.

Extreme Strike Behavior

Lee (2004) published a very general result about the extreme strike behavior of any

implied volatility function. Work in this area has been continued by Benaim, Friz

and Lee in Benaim et al. (2009), Benaim and Friz (2009). The basic idea of Lee is

the following. Let

x := ln

(

K

f

)

be the log-moneyness and I2(x) the implied variance for a given moneyness x. In-

dependent of the underlying model for the asset S there exists a βR ∈ [0,2] such

that
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βR := limsup
x→∞

I2(x)

|x|/T
.

A very important result is that the number βR is directly related to the highest finite

moment of the underlying S at time T such that βR can be stated more explicitly

depending on the model. Define

p̃ := sup{p : E(S1+p
T ) < ∞.}

then we have

βR = 2−4(
√

p̃2 + p̃− p̃),

where the right hand expression is to be read as zero in the case p̃ = ∞. A similar

expression can be obtained for x →−∞. Consequently, the modeling of the implied

volatility function in the delta space can not be arbitrarily, since Lee’s extreme strike

behavior has to be fulfilled. In the Appendix, we prove the following extreme strike

behavior for the simplified parabolic formula:

lim
x→∞

σ(∆S(x),σS) = σAT M − c1∆AT M + c2∆ 2
AT M, (40)

which is a constant. Similarly,

lim
x→−∞

σ(∆S(x),σS) = σAT M + c1(e
−r f τ −∆AT M)+ c2(e

−r f τ −∆AT M)2, (41)

which is again a constant. Equivalent results can be derived for the forward delta and

the premium-adjusted versions. Consequently, the simplified formula implies a con-

stant extrapolation, which is consistent with Lee’s moment formula. The constant

extrapolation implies that

lim
x→∞

I(x)
√

|x|/T
= 0 = lim

x→−∞

I(x)
√

|x|/T
.

This is only consistent, if

sup{p : E(Sp+1
T ) < ∞} = ∞,

e.g. all moments of the underlying at time T are finite. Although the simplified

parabolic formula has been derived with a rather heuristic argumentation, it is only

consistent if the underlying that generates such a volatility smile has finite moments

of all orders.

Potential Problems

Potential numerical issues may arise due to the following:

1. Formula (34) is not restricted to yield positive values.
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2. A root for Equation (37) might not exist. We do not know how large U,W are

and whether a volatility can be found for any strike K.

3. The denominator in equation system (35) can be zero.

4. A root for Equation (36) might not exist.

The question arises, how often these problems occur in the daily market calibration.

We have analyzed the occurrence of the problems above based on market data pub-

lished on Bloomberg, where σAT M ,σ10−RR,σ25−RR and σ10−S−Q,σ25−S−Q volatil-

ities are quoted. We have considered the currencies EUR, GBP, JPY, CHF, CAD

and AUD, which account for 88% of the worldwide traded OTC derivative notion-

als6. The data is summarized in Figure (9). The volatilities are quoted for maturities

of 1,3,6,9 and 12 months. The delta types for all maturities below 9 months are

spot deltas for the currency pairs EURUSD, GBPUSD, AUDUSD and premium-

adjusted spot deltas for the currency pairs USDJPY, USDCHF, USDCAD. For the

12 month maturity, the first currency group uses forward deltas, while the second

one uses premium-adjusted forward deltas. All currencies use the forward delta neu-

tral straddle as the at-the-money convention. We have performed a daily calibration

Table 9: FX Data Summary

EURUSD GBPUSD USDJPY USDCHF USDCAD AUDUSD

Begin Date 03.10.2003 03.10.2003 03.10.2003 05.01.2006 03.10.2003 03.10.2003

End Date 20.01.2009 20.01.2009 20.01.2009 20.01.2009 20.01.2009 20.01.2009

Data Sets 5834 5780 6126 3849 5775 5961

to market data for all maturities and currencies. The calibrations were performed to

the 0.25∆ and 0.10∆ quotes separately. Then we have tested for problems occurring

within a ±0.10∆ range. A check for a zero denominator in equation system (35) has

been performed. Finally, we checked the existence of a root for the implied problem

(37). In none of the more than 30,000 calibrations did we observe any of the first

three problems. We thus conclude, that the method is very robust in the daily cali-

bration.

However, the calibration failed 6 times (in more than 30,000 calibrations) in the root

searching procedure for Equation (36). This happened for the 0.10∆ case for the ex-

tremely skewed currency pair JPYUSD, where risk reversals of 19% and more were

observed in the extreme market scenarios following the financial crisis. The calibra-

tion procedure is more robust than other methods which have shown more than 300

failures in some cases. Also, it is not obvious whether any smile function can match

the market quotes in these extreme scenarios. These issues will be covered in future

research.

6 Based on data as of December 2008, published by the Bank for International Settlements on

www.bis.org/publ/qtrpdf/r qa0906.pdf
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2 Conclusion

We have introduced various delta and at-the-money quotations commonly used in

FX option markets. The delta types are FX-specific, since the option can be traded in

both currencies. The various at-the-money quotations have been designed to account

for large interest rate differentials or to enforce an efficient trading of positions with

a pure vega exposure. We have then introduced the liquid market instruments that

parametrize the market and have shown which information they imply. Finally, we

derived a new formula that accounts for FX specific market information and can be

used to employ an efficient market calibration.

Follow-up research will compare the robustness and potential problems of differ-

ent smile calibration procedures by using empirical data. Also, potential calibration

problems in extreme market scenarios will be analyzed.
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3 Appendix

To reduce the notation, we will drop the dependence of σ(∆ ,σS) on σS in the fol-

lowing proofs and write σ(∆) instead.

Proof (Simplified Parabolic Formula). We will construct a parabola in the call delta

space such that the following restrictions are met

σ(∆AT M) = σAT M,

σ(∆̃) = σAT M +
1

2
σR +σS,

σ(a− ∆̃) = σAT M − 1

2
σR +σS. (42)

For example, in the forward delta case we would have a = 1. Given ∆̃ = 0.25, the

call delta corresponding to a put delta of −0.25 would be 1− 0.25 = 0.75. The

equation system is set up such that

σS =
σ(∆̃)+σ(a− ∆̃)

2
−σAT M.



Empirical FX Analysis 29

One can see that σS measures the smile convexity, as it is the difference of the

average of the out-of-the-money and in-the-money volatilities compared to the at-

the-money volatility. The restriction set (42) ensures that

σ(∆̃)−σ(a− ∆̃) = σR (43)

is fulfilled by default. Given the parabolic setup

σ(∆) = σAT M + c1(∆ −∆AT M)+ c2(∆ −∆AT M)2,

one can solve for c1,c2 such that Equation system (42) is fulfilled. This is a well

defined problem: a system of two linear equations in two unknowns. ut
Proof (Existence of a Volatility vs Strike Function). The simplified parabolic func-

tion has the following form

σ(∆ ,σS) = σAT M + c1(∆ −∆AT M)+ c2(∆ −∆AT M)2. (44)

First of all, note that ∆(K,σ) is continuously differentiable with respect to both

variables for all delta types. Define F : IR+ × IR+ → IR to be

F(K,σ) = σAT M + c1(∆(K,σ)−∆AT M)+ c2(∆(K,σ)−∆AT M)2 −σ (45)

with ∆(K,σ) being one of the four deltas introduced before. The proof is a straight-

forward application of the implicit function theorem. Note that F(KAT M,σAT M) = 0

is given by default. As already stated, the function F is differentiable with respect

to the strike and volatility. Deriving with respect to volatility yields

∂F

∂σ
= c1

∂∆

∂σ
+2c2(∆ −∆AT M)

∂∆

∂σ
−1. (46)

From this derivation we have

∂F

∂σ
(KAT M,σAT M) = c1

∂∆

∂σ
(KAT M,σAT M)−1, (47)

which is different from zero by assumption of the theorem. Consequently, the im-

plicit function theorem implies the existence of a differentiable function f and an

open neighborhood U ×W ⊆ IR+ × IR+ with KAT M ∈U , σAT M ∈W such that

F(K,σ) = 0 ⇔ σ = f (K) for (K,σ) ∈U ×W.

The first derivative is defined on U and given by

∂ f

∂K
= −

∂F
∂K

∂F
∂σ

for K ∈U,

which can be calculated in a straightforward way. The function f (K) is denoted as

σ(K) in the theorem. The second derivative can be derived in a straightforward way



30 Dimitri Reiswich, Uwe Wystup

by remembering, that the volatility depends on the strike. This completes the proof.

ut

Proof (Extreme Strike Behavior of Simplified Parabolic Interpolation). Let

x := log

(

K

f

)

be the log moneyness. The terms d± can be rewritten as

d±(x) :=
−x± 1

2
σ2τ

σ
√

τ
.

We then have:

lim
x→∞

N(d±(x)) = 0, (48)

lim
x→−∞

N(d±(x)) = 1. (49)

The c1,c2 terms are constants. Consequently, for the spot delta we derive:

lim
x→∞

σ(∆(x),σS) = σAT M − c1∆AT M + c2∆ 2
AT M, (50)

which is a constant. Similarly,

lim
x→−∞

σ(∆(x),σS) = σAT M + c1(e
−r f τ −∆AT M)+ c2(e

−r f τ −∆AT M)2, (51)

which is again a constant. Equivalent results can be derived for the forward delta.

The next analysis discusses the premium adjusted forward delta case; the spot pre-

mium adjusted case is similar. Rewriting the premium adjusted forward delta in

terms of the log moneyness x yields

∆ f pa = exN(d−(x)) = exN
(

−
[

x+ 1
2
σ2τ

σ
√

τ

]

)

= ex − exN
(x+ 1

2
σ2τ

σ
√

τ

)

.

Consequently, we have

lim
x→∞

∆ f ,pa(x) = 0 = lim
x→−∞

∆ f ,pa(x).

This implies that

lim
x→∞

σ(∆ f ,pa(x),σS) = σAT M − c1∆AT M + c2∆ 2
AT M = lim

x→−∞

σ(∆ f ,pa(x),σS). (52)

Note, that this limit differs from the spot delta case, since the terms a and ∆AT M are

different. ut
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∂K ∂σ ∂K2

∆S − e
−r f τ

n(d+)
σ
√

τK
− e

−r f τ
n(d+)d−
σ

e
−r f τ

n(d+)
σ
√

τK2 − e
−r f τ

n(d+)d+

σ2τK2

∆S,pa
φe

−r f τ
N(φd−)
f

− e
−r f τ

n(d−)
f σ

√
τ

− e
−r f τ

Kn(d−)d+
f σ − e

−r f τ
n(d−)

f σ
√

τK
− e

−r f τ
n(d−)d−

f Kσ2τ

∆ f − n(d+)
σ
√

τK
− n(d+)d−

σ
n(d+)

σ
√

τK2 − n(d+)d+

σ2τK2

∆ f ,pa
φN(φd−)

f
− n(d−)

f σ
√

τ
−Kn(d−)d+

f σ − n(d−)
f σ

√
τK

− n(d−)d−
f Kσ2τ

Table 10: Partial Delta Derivatives I

∂K∂σ ∂σ2

∆S

e
−r f τ

n(d+)

(

1−d+d−

)

σ2
√

τK

e
−r f τ

n(d+)(d−−d+d−d−+d+)
σ2

∆S,pa

e
−r f τ

n(d−)

(

−d+σ
√

τ+1−d−d+

)

f σ2
√

τ

e
−r f τ

Kn(d−)(d+−d−d+d++d−)
f σ2

∆ f

n(d+)

(

1−d+d−

)

σ2
√

τK

n(d+)(d−−d+d−d−+d+)
σ2

∆ f ,pa

n(d−)

(

−d+σ
√

τ+1−d−d+

)

f σ2
√

τ

Kn(d−)(d+−d−d+d++d−)
f σ2

Table 11: Partial Delta Derivatives II
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