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FX Column: Can Volga of a Long Vanilla Option be Negative?   

Uwe Wystup, MathFinance AG, Frankfurt am Main  

 

Volga is an abbreviation for volatility-gamma, strictly non-related to the river in Russia. It is sometimes also called 

vomma or d-vega-d-vol. Mathematically, it is defined as the second derivative of the value of a derivative contract 

with respect to volatility σ and can consequently be interpreted as the first derivative of vega with respect to 
volatility, because vega is already the first derivative of the value with respect to volatility. For vanilla options in 

the Black-Scholes model the analytic formula for volga is    𝑆𝑒−𝑟𝑓𝑇√𝑇𝑛(𝑑+) 𝑑+𝑑−𝜎 , 

where as usual 𝑆 denotes the spot reference, 𝑟𝑓 the foreign continuous interest rate (or dividend rate) in a 

currency pair FOR-DOM, so in EUR-USD with spot 1.1500, it would be the EUR interest rate, 𝑇 the time to 

maturity (in years), σ the volatility, 𝑑± = ln𝐹𝐾±12𝜎2𝑇𝜎√𝑇  the usual auxiliary terms in the Black-Scholes formula, which 

some folks denote by 𝑑1 and 𝑑2 if they haven’t been exposed to a symmetry missionary like myself. For 

completeness, 𝐹 denotes the Forward price and 𝐾 the strike price. Note that the formula does not depend on 

whether the option is a call or a put. And of course, for non-vanilla options, there are also formulas, but they often 

turn out to be quite lengthy. Let’s focus on vanilla volga in this column.  

Figure 1 illustrates the volga profile of a vanilla call (or put, doesn’t matter) on the spot and time space.  

 

 
Figure 1: volga profile of a long vanilla option 
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Volga being a type of gamma insinuates that it must be always non-negative, and the graph in Figure 1 seems to 

confirm this. However, when we look closely in the middle, which is at-the-money for the option, the situation 

appears to be a bit ambiguous, and one might ask whether volga is really always non-negative. A negative 

gamma would be equivalent to a negative probability density and consequently indicate a butterfly arbitrage. But 

what about a negative volga? This would mean that more volatility would cause less volatility risk, which may feel 

counter-intuitive at first glance. In fact, this question came up in one of my training courses on FX options (Figure 

2), which have been running for 15 years all over the world, and there hasn’t been a single course without a 

puzzle like this.  

 

 

Figure 2: An FX Options instructor in Warsaw in June 2021 

 

There are many ways to answer the questions. The mathematician would most likely perform her standard 

procedure, calculate the derivative of volga with respect to the strike and set the result equal to zero, i.e., applying 

high-school math to a non-high-school formula so it feels intellectual. Here we go:  

The first order condition can be written as −2𝑙 +  𝑑+𝑑+𝑑−𝑠 = 0, where we use the abbreviations 𝑙 = ln 𝐹𝐾 and 𝑠 = 𝜎√𝑇 or equivalently 8𝑙3 + 4𝑠2𝑙2 − (16𝑠2 + 2𝑠4)𝑙 − 𝑠6 = 0. This cubic equation in 𝑙 generally has 

three real roots (Cardano formula), which meets our expectation, as when we look at Figure 1, we would expect 

two maxima in the wings and one minimum in the center. There will be one root minimizing volga, which is near 

the forward price, and two more roots maximizing volga. Corresponding optimizing strikes are obtained via 𝐾 =𝐹𝑒−𝑙.  
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Example  

If we take a forward price 𝐹 = 1.0000, volatility σ = 10%, maturity 𝑇 = 1 year, then 𝑠 = 0.1, and the three 

optimal strikes are listed in Table 1. The center strike, which is near the forward price, minimizes volga and does 

in fact take a negative value; so mathematically, we are done.   

 

strike strike forward 

delta  

volga 

K+ 1.15492 8.22% 314.46% 

K0 1.00001 51.99% -0.996% 

K- 0.87020 92.51% 272.96% 

Table 1: Strike prices leading to maximum and minimum values for volga 

 

Intuition  

 

An experienced options instructor would probably look at the question from another point of view. The graph in 

Figure 3 shows the value of a vanilla call options as a function of volatility on the y-axis. We know that for 

contracts with convex payoff-functions like a call or a put option the value increases with volatility: “the higher 

the vol, the higher the value”. But how does the value function grow as volatility increases. I typically let the 

audience put high values of volatility into their option pricing tool and let them observe. Some of them conclude 

that the option value must be bounded – but not all of them! Some like to argue for linear or log-like growth. Well, 

it must clearly be bounded, because the call option entitles the holder to buy 1 EUR at maturity, which cannot be 

worth more today than a discounted EUR. Therefore, the function must have an inflection point and must be 

concave down on the right-hand side, which in turn means a negative second derivative as high-school math has 

taught us.  

 

Figure 3: Black-Scholes value of an at-the-money vanilla call option as a function of volatility 
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The second derivative is called volga and is hence negative for an at-the-money option when volatilities are high.  

Since volatilities in FX markets are usually around 10% or even less for G10 pairs, a negative volga is hardly 

observed in practice. For commodity and crypto markets volatilities are higher though.  

 

A risk manager would probably explain why higher volatility leads to lower volatility risk, by arguing that for a 

higher volatility the probability density becomes flatter and wider. This density is the same as gamma when we 

ignore discounting. Gamma in turn is a multiple of vega1, so when vega becomes flatter, the maximum vega 

decreases (and the wing vega increases). Vega is shown in Figure 4.  

 

 

 

Figure 4: Example vanilla option with negative volga, source: Eikon 

 

 

Summary 

Vanilla volga can be negative and usually is negative near the at-the-money point, especially when volatilities are 

high. An example in EUR-USD is shown in Figure 4. And as usual, high-school math can take you a long way!  

 

 
1 Reiss, O. and Wystup, U. Efficient computation of option price sensitivities using homogeneity and other 

tricks, The Journal of Derivatives Vol. 9 No. 2, Winter 2001.  


