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Abstract

Starting with an overview of the current FX derivatives industry
we take a look at a few examples where computational methods
are crucial to run the daily business. The examples will include in-
stalment contracts, accumulative forward contracts and the efficient
computation of option price sensitivities
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1. Overview
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' EUR/USD is one of the most liquid underlying markets
s Trading activities in FX are

1. Spot/Forward (90%) - extremely small margins
Page 3 of 66 2. Vanilla Options (9%) - small margins

Go Back 3. Exotic Options (1%) - potentially higher margins
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1.1. FX Exotics

go

T R e

barrier and touch options
compound and instalment
average rate options

forward start and cliquets

corridors/fader /accumulative options

quanto options

multi-currency options:
barriers

vol- and variance swaps

. structured products

baskets, bestof, outside
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2. Accumulative Forward

Overview

Accumulative Forward Market of Jan 7 2003, EUR/USD Spot at Sy = 1.0200.

Instalment Options
. Zero cost contract for T' = 1 year.
reeks

Contact Information

Client sells 200k USD at K = 0.9700 every day the
EUR/USD fixing F; is between K = 0.9700 and
B =1.0700.

Client sells 400k USD at K = 0.9700 every day the
EUR/USD fixing F;, is below K = 0.9700.

If B = 1.0700 ever trades, then the client stops accu-
mulating but keeps 50% of the accumulated amount.
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Total of 255 Fixings.
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Accumulative Forward Payoﬂ‘ per 2001{ USD 1s
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(ST - K) Z I{Fti<B} [50%E{St<BVt} + 5O%ﬂ{ti<7}]
+ (Sr—K) ) L5 <xy [50% T (s,<pwy + 50% T (1< ]
Title Page - é 1nf{t : St Z B} (1)

TV can be computed in closed form (see [7]).
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2.1. Pricing and Hedging: Method 1

replicate the structure using options we can price over TV

A Client buys strip of 0.9700 eur call , RKO 1.07. We price the 3,6,9,12
Accumulative Forward month
Instalment Options
Greeks month bp
Contact Information 3 +50
6 +35
mathfinance.de 9 +3O
Title Page 12 +2 3

Average of 34 bp over for nominal amount of 255 * 200,000 / 0.9700
= 52.58 MIO EUR
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@ B Overhedge A = 179 K
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B Client sells strip of 0.9700 eur put , KO 1.07. We price the 3,6,9,12

month
et s

Accumulative Forward 3 -5
Instalment Options

6 —15
Greeks
Contact Information 9 —20

12 —20

mathfinance.de

. Average of 15 bp under for nominal amount of 255 * 400,000 / 0.9700
Tt Foge = 105.15 MIO EUR

Overhedge B = 158 K
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C Client sells a one-touch 1.0700 (to account for the 50% reduction of his
payout if we touch 1.0700) maturity 1 year.
Price is 4% under TV.
Payoff of the one-touch = 50% * 50 mio * (1.07-0.97) = 2.5 MIO
Overhedge C = 2.5 mio * 4% = 100 K

Total Overhedge = A + B + C = 437 K
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Overview 2.2. Pricing and Hedging: Method 2

Accumulative Forward

instalment Options Looking at the cost of vega management
Greeks

Contact Information A structure has 25K negative volga ... cost 115K (using
a butterfly)

mathfinance.de

B structure has 325K negative vanna between 0.99 and

T P 1.09 ... cost 285K using the price of a 1 year Risk
Reversal
C structure has 200K of vega ... cost 20 K of spread
Page 10 of 65 (0.1 vol versus mid- market)

e Total Overhedge = A + B + C = 420 K EUR
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2.3. Financial Engineering Issues

1. Need fast calculators for TVs, ideally closed-form solutions

Overview 2. Automate computation of the hedge and its cost

Accumulative Forward

3. Live market data feed: Spot, Termstructure of Interest Rates, Vol-

Instalment Options
surface

Greeks

Contact Information 4. For Method 1: shift exotic risk to liquid risk, i.e. using first generation
exotics to price 2nd generation exotics

mathfinance.de 5. For Method 2: shift exotic risk to liquid risk, i.e. using vanillas to

price first generation exotics.
Title Page
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2.4. Pricing a one-touch

e pays a fixed amount of a pre-specified currency, if the underlying ever
touches a barrier

Overview
Accumulative Forward e costs between 0% and 100%

Instalment Options

- e the closer the spot at the barrier, the more expensive the one-touch
reeks

Contact Information e market price often far away from TV, due to cost of risk management

All details in [17].

mathfinance.de
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Example for market: EUR/USD 17 July 2002 1.0045 EUR 3.33% USD
1.76%, 3 M ATM vol 11.85%, RR 1.25%, BF 0.25%

Overview upper barrier

lowear barriar

Accumulative Forward B% -
4 ]

Instalment Options -

Greeks 2% |

Contact Information
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Overhadge
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theoretical value

theaoretical valua
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Figure 1: Overhedge for one-touch options
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The Overhedge calculation

e Market price of the option
e = TV (theoretical value)

Accumulative Forward
Instalment Options e +p- vanna of the option - value RR / vanna RR

Creeks e +p- volga of the option - value BF / volga BF

Contact Information

where
mathfinance.de o RR: Risk Reversal
Title Page o BF: Butterfly

e p: probability that the hedge is needed
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Smile for fixed maturity

Butterfly und Risk Reversal
% vol

put delta

_9E0 £o >
e ATM *25%  call delta

Figure 2: Butterfly and Risk Reversal
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Example

e 1Y USD/JPY one-touch at 127.00, notional in USD

e Market data: 117.00 spot, 8.80% vol, 2.10% USD interest rate, 0.10%
=S JPY interest rate, 25delta RR -0.45%, 25delta BF 0.37%

ikl Lt e TV: 38.2%, Vanna -9.0, Volga -1.0
Z::; Information Market price is computed as TV = 38.2%
e +p--9.0--0.15% / 4.5
mathfinance.de o +p--1.0-0.27% /0.035
v e o =382%+p-[0.3% — 7.7%] =382% —p- 7.4%

where

o p=100% — 38%

Page 16 of 68

e so, overhedge is 62% - —7.4% = —4.7%
Go Back e so, market mid price is 38.2% — 4.7% = 33.5%
Full Screen e 50, bid - ask could be 32%/35%
Close e and the hedge: sell 2 RR and 28 BF

Quit
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3. Instalment Options

Joint work with Susanne Griebsch, Goethe University.

3.1. What is an Instalment Option?
e Like Vanilla Option, but

(1) Premium is divided into several payments and is paid periodi-
cally on so-called ”instalment dates”

(2) Holder has the right to cancel option through the termination
of instalment payments

Figure 3: Dates for Instalment Payments

e Other names: continuation option, pay-as-you-go option, a general-
ization of compound option
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e n-Instalment Option can be understood as a series of n options de-
pending on each other

Standard Option V (t)
A

(" Compound Option v, ( )
Instalment Options ( A \
Greeks | p=v1 (tﬂ) k1 k2 kn-1 kn
Contact Information | ﬂ | o | "
=0 IE t, t t=
v
V,(t
mathfinance.de L ! ( ) J
v
Title Page Vz (t)
Figure 4: Lifetimes of the options V;
e Characterized by
Page 18 of 68
— n exercise times ¢y, ...,t, = T (often t; = iT/n for all i),
G0 Back — n strike prices ki, ..., k,,
Full Sereen o +1 if option ¢ is a call
— n put/ call indicators ¢y, ..., ¢, where ¢; :=
Close -1 if option 7 is a put

Quit
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Market data

e Sp: spot

Overview e 7, domestic interest rate

Accumulative Forward
Instalment Options e 1 foreign interest rate

Greeks o1
e o: volatility
Contact Information
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3.2. Advantages of Instalment Options

e Traded over-the-counter tailor-made to client needs
e Prevention of losses through possibility of termination

e Helpful in situations where necessity of hedge is uncertain

Instalment Options

Greeks e Low initial premium is easy to schedule in the firm’s budget

Contact Information

2 3
£ 2
o Ingtallinent Premidm o
mathfinance.de Profit of Optian
Standard Instal ment|
Title Page i Loss of Option
Sk %‘—L—’ M\n)(ﬁ}/ Stancara || [JInstallmant
premiun Fl.l JF i z fﬂﬂ J]'L )
af — I Strlke: i i i
e VI i I
b .M i Praniam -v'\u*"l‘
Lua af
Standard
Cption
Page 20 of 68 Time Moty Ter ot T T Watarity ———

Go Back Figure 5: Comparison of Instalment Option with Vanilla Put: Continuation

of instalment payments until expiration vs. Continuation of instalment
payments until expiration
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3.3. Example of a Traded Instalment Option

Application area: International Treasury Management
Corporate buys EUR Call/ USD Put 25 Mio EUR notional
Strike price: 1.0500 EUR/USD

Exercise type: European

Maturity date: 17 Dec 2003, Delivery settlement on 19 Dec 2003
Transaction date: 19 Dec 2002

EUR USD spot ref: 1.0259

Premium and strike prices: 285,500.00 USD

Decision and Value dates: 31/03/03, 02/04/03, 30/06/03, 02/07/03,
30/09/03, 02/10/03

The corporate has extended the instalment at all dates and finally
sold the EUR call on Nov 19 2003 for a profit of 2.77 MIO EUR (spot
was at 1.1900).
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3.4. Pricing of Instalment Options in the Black-Scholes Model

e Like Vanilla Options or Compound Options, i.e. discounted expec-
tation of payoff function

o dS, = S[(rg —rp)dt +odW;] for 0 <t < T
Instalment Options Stg = Stl eXP((Td — Ty — 02/2)At + ov AtZ), for 0 < t1 <ty < T),

Greeks At = ty—t

Contact Information

e Payoff at maturity is max (¢, (St — k»),0) L (Pn(ST — kn)) ™

e Date before last instalment date t,,_; buyer pays k,_1 to receive clas-
sical european option, in which the price at ¢, _; is described by

mathfinance.de

Title Page

Va(s) el Vsia(s) = e_rd(tn_tn_l)E[¢n[ST - kn]+ | St,_, = 5]

e Rational buyer only pays instalment rate if Vg > k1
shortly before instalment date option is worth max(Vsyy — kpn—1,0)

Page 22 of 68

e Compound option price at time t,_» is
Go Back

Full Screen Vn_l(S) déf VCp(S) — e—Td(tnfl_tn72)]E[¢n_1 [V’n - kn—1]+ | Stn72 = S]
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Next steps are analogous, compound option V; with option V;,; so
that V; is an option on V;,; with strike k; and decision date t;

Exact expression for value function of Instalment Option
Vi(s) & emrat—t-DE[(¢; (Vi (ti1)—ki)* | Sicy = 8], fori=1,...,n—1.

When carried out for all # < n — 1, result is first instalment which is
paid to open the deal at t5 =0

p L Vi(s) = TRV, — ] | 8, =]

Nested expectations require analysis of multiple integrals

Numerical computation of multiple integrals is time consuming and
possibly imprecise
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3.5. n-variate Cumulative Normal Formula

e n-variate cumulative normal function

Nn(hz, {pij}lgjgnﬂ(j) = PI'Ob{Zl < h“’l = 1, ,n}

hy hn
:/ / n(xy, ..., Tp)dx,...dx;

e Curnow and Dunett (1962), see [5], show

—00

hi o
No(hii {pis}) = / Nn_1<h@ "“y-{pij*l}> ndy =2,

T

1
(1-62)2 (1-82)

e Special case n = 2 was used for compound option formula

Ny(hy, ho; p) = / 1 N (%) n(y)dy
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n-variate case

!
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o t = (t,...,t,) instalment dates

e ¢ = (d1,...,6,) put/call indicators
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3.6. Binomial Tree Option Pricing Technique

e Binomial model was developed by Cox, Ross and Rubinstein

Overview e Price movements of log-returns of underlying are modeled as constant

Accumulative Forward up and down movements (v = exp(o+/T/m, d = exp(—o+/T/m) in
the tree.

Instalment Options
Greeks

Contact Information
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3.7. Algorithm for Pricing Instalment Options by H. Ben-
Ameur, M. Breton and P. Fraincois [2]
e Approximation of value of Instalment Option at ¢ through piecewise

linear interpolation, therefore solving dynamic programming equa-
tion which results in a closed form

Accumulative Forward

Instalment Options

Greeks o Exercise value is V,,(s) = max(0, ¢,,(St — ky))

Contact Information

e Holding value at ¢; is V/"(s) = Ele "*V;41(Sy,,) | Si, = s] for

1=0,...,n—1
mathfinance.de Where
Title Page ‘/E)h(s) for Z _ O
Vn(S) fori=n
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e qp=0<a; <..<ay<apy = —+oo set of points
Ry, ..., R, partition of R™ in (p + 1) intervals R; = (a;, a;41] for j =

0,....,p
e Given approximations 9; of option value v; at a; in step 7
AAEERI TS (RO piecewise linear interpolation of this function achieved through
Instalment Options )
2 . g g ~ A o
9i(s) = Y (0} +Bi8) la;<s<aser,  Bila;) = Bi(ay), for j=0,...p—1,
i=0
- i i i i
for j = p choose a;, = oy, ; and B, = 3,
e Assuming 9, is known, calculate expectation in step 4
=) —rg At A
S o' (ar) = E[e7 " 0i11(Sty,)|Sk = ar]
| > | Zp
1At i+l
= € 4 a] E[Iﬁ<e;¢At+o‘\/A7tz< 2j+1 ]
3 @ e
i1 pdt+ovVAtz _
+ B mEle o _punvrovmisg it
p = rqy—ry— c%/2, v; approximated holding value of Instalment
Option
i
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e For k=1,...pand j =0,...,p first integrals

N(zg,1) for j =0
_ _ ;
verview Ap,j = ]E[Ig@umwng 241 1 = N(zk,j4+1) — N(zk,5) for1<j<p-—1
Accumulative Forward k k 1— N(2gp) for j=p
Instalment Options
Greeks
R nAt+oV Atz a.
Contact Information Br.s Elaxe Iﬁ <eplttovAtzg % ]
apN(zg,1 — oV At)e(rd_rf)At for j=0
= ar[N(zy j11 — oVAL) — N(zh j — oV/AL)]eraTs)AL for 1<j<p-—1
mathfinance.de agll — N(zg,p — U\/Kt)]e(rd*Tf)At for j=p
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with xy ; = [In(a;j/ar) — pAt]/(oVAL).
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Procedure
0. Calculate a;

Overview 1. Calculate 0,(s) for all s

Accumulative Forward

)
T G 2. Calculate o_,(ay) for all k in closed form
(

Greeks 3. Calculate v,,_1(ay) for all k
Contact Information

4. Calculate v,,—1(s) for all s >0

5. Iterate these steps until o (sg)=Price of Instalment Option at time 0
is calculated
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Title Page

Page 31 of 68

Go Back

Full Screen

Close

Quit



http://www.mathfinance.de/

Overview

Accumulative Forward
Instalment Options
Greeks

Contact Information

mathfinance.de

Title Page

Page 32 of 68

Go Back

Full Screen

Close

Quit

3.8. Comparison of Accuracy and Speed

e Results of binomial trees oscillate strongly

1,69100 5 1,69100 5

1,G9050 4
160050 4
1,69000 -

1,68950 4 1,69000 4

1,63900 + 1,58950 A

1,68850 1

1,63800 o
1,62800 -

1,68750 T T T T T T T T T T d 1,68850 T T T T T ]
980 BE0 1000 4010 1020 4030 4040 4050 1060 4070 1080 1090 L 1000 2000 3000 4000 S000 G000

Figure 6: Convergence of the value function in the binomial trees imple-
mentation

e Trivariate formula is the fastest of all considered methods, even for
higher numbers of instalments

e Accuracy of trivariate formula now only depends on accuracy of cal-
culation of multivariate normal integrals and calculation of roots

e Algorithm of ABF works for equally distant instalment dates
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Performance

Numerical Method Value of Vyy | Time
Binomial Trees n = 4000 1,69053 1109 sec
Trivariate Formula 1,69092 < 1 sec
Algorithm (Article of ABF) p = 4000 1,69084 168 sec
Numerical Int. (50000-point Gauss-Legendre) || 1,69087 176 sec
Numer. Int. of Cp Formula (Mathematica) 1,69091 A7 sec

Table 1: So = 100, kl = 100, k2,3 = 3, g = 20%, Td = 10%, Ty = 15%, T = 1,

At =1/3, p123=1
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3.9. Convergence of Identical Premium

e Continuous Instalment Option is an american type option, where

— Total sum of premiums paid at beginning
Accumulative Forward — Difference repaid in case of an option termination

Instalment Options

e Discounted sum of instalments
Greeks

Contact Information u, = fn Z e—?"dti where t; = (’L _ 1)At and nAt =T

i=0
u,, price of n-Instalment Option with instalment dates ¢; and iden-
tical premium f, paidat ¢, 0 <i<n—1

mathfinance.de

Title Page . X . . . .
e With increasing number of instalments n the total premium wu,, in-

creases (increasing optionality)
e With increasing n, instalment payments decrease

Page 34 of 68 e u, converges to an upper bound

T
Go Back _
U :g/ e "*ds
0

Full Screen

n — oo (and At — 0)
Close g is the uniform premium for continuous Instalment Option paid

oui between gdt and t + dt g corresponds with limit % —g
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Figure 7: Convergence of uniform premium in discrete case to continuous

premium

e How can we describe this upper bound?
Page 35 of 68

e Possible approach:
Continuous Instalment Option = Vanilla Call plus American Com-
Full Screen pound Put on this call with linearly decreasing strike (w.r.t. time)
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4. Greeks

Joint work with Oliver Reiss, Weierstrass Institute Berlin

Greeks
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4.1. Notation

(=)

Q

stock price or stock price process

cash bond, usually with risk free interest rate r
risk free interest rate

dividend yield (continuously paid)

volatility of one stock, or volatility matrix of several stocks
correlation in the two-asset market model

date of evaluation (“today”)

date of maturity

time to maturity of an option

stock price at time ¢

payoff function

value of an option

strike of an option

level of an option

partial derivation of v with respect to = (and analogous)
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The standard normal distribution and density functions are defined by

Il

>

5

1 2_2 2
exp <_5L‘ pry +y > )

21y/1 — p2 2(1 — p?)
/:o /_io na(u,v; p) du dv (5)


http://www.mathfinance.de/

Overview

Accumulative Forward

Instalment Options
Greeks

Contact Information

mathfinance.de

Title Page

Page 39 of 68

Go Back

Full Screen

Close

Quit

4.2. Common Greeks

Delta
Gamma
Theta
Rho
Rhor
Rhoq
Vega
Kappa

A
r
)

Vg

v, in the one-stock model

v, in the two-stock model

v, correlation sensitivity (two-stock model)
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4.3. Not so common Greeks

Close

Leverage A “v,  sometimes (), sometimes called “gearing”
Vomma / Volga @' v
Accumulative Forward Speed -
Greeks Charm Uzt
Color Vst
Cross / Vanna Vro
Forward Delta  AF Up
Driftless Delta A4 Ael”
n“ Dual Theta Dual® wvr
_— Strike Delta AF Uk
Strike Gamma ~ I'* Uk
l
Level Delta A v
_ Level Gamma I vy
Full Screen
_ Beta /612 g—;p two-stock model
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4.4. Scale-Invariance of Time

Based on the relation

U(xb"'anaTalra(h)"'aqnaalla"'70nn) =
Accumulative Forward T

U(xb coey Ty —, AT, A4, «-.y An, \/50-117 ceey \/ao-nn) (6)
Instalment Options a

sieEie we obtain

Contact Information
Theorem 4.1 (scale invariance of time)

mathfinance.de - 1 .
0=70+rp+ Z QiPg; + 5 Z Wysonss (7)

Title Page 1=1 ,5=1

where ®;; denotes the differentiation of v with respect to 0.
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4.5. Scale Invariance of Prices

Definition 4.1 (homogeneity classes) We call a value function k-ho-

mogeneous of degree n if for all a >0
Overview

Accumulative Forward v(ax, ak) = a"v(x, k) (8)

Instalment Options

Er— value function strike-homogeneous of degree 1: strike-defined option value

. function level-homogeneous of degree 0: level-defined option
Contact Information
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4.5.1. Strike-Delta and Strike-Gamma

For a strike-defined value function we have for all a,b > 0
abv(z,k) = wv(abx,abk).
We differentiate with respect to a and get for a =1
bu(z, k) = bruy(br,bk) + bkvg(bz, bk).
We now differentiate with respect to b get for b =1

v(x, k) = 2V + TVt + XUk + kg + kUgeT + kugpk
= A+ 2°T + 2zkvge + kA + E2TF.

If we evaluate equation (10) at b =1 we get
v =zA + kA",
We differentiate this equation with respect to & and obtain

A* = zug + AR+ EkTF,
kxve, = —k*T*.

Together with equation (12) we conclude

2T = k°TF.
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4.6. European Options in the Black-Scholes

Model
Relations among Greeks for European claims in n-dimensions
dSi(t) = Si®)[(r — q)dt +o; dW;(t)], i=1,...,n(17)
Cov(Wi(t), W;(1) = pit, (18)
Greeks
Contact Information where r is the risk-free rate, ¢; the dividend rate of asset i or foreign inter-
est rate of exchange rate i, o; the volatility of asset ¢ and (W1,...,W,,) a
standard Brownian motion (under the risk-neutral measure) with correla-
mathfinance.de tion matrix p. Let v denote today’s value of the payoff f(S1(T),...,S.(T))

at maturity 7. Then it is known that v satisfies the Black-Scholes partial
differential equation

Title Page

n n
1
— T
0 = —v,—rv+ E T (T — ;) v, + 5 E (0 00")iTiTjVg,0;- (19)
=1 3,j=1
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4.6.1. Relations among Greeks Based on the Log-Normal Distribution

The value function v has a representation given by the n-fold integral

v=¢e T / f ( . Si(O)eai\ﬁxi‘i‘,uiT’ - ) g(Z, p) dz, (20)

Instalment Options

where y1; = r—gq; — 07 and g(&, p) is the n-variate standard normal density
with correlation matrix p. Since we do not want to assume differentiability
of the payoff f, but we know that the transition density ¢ is differentiable,
we define a change the variables y; = S;(0)es V=T which leads to

Greeks

Contact Information
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In L — p;7 dii
—rT Si(o) v y
- T : L (1
Title Page e /f( Y )g( oi/T p) [Tyioi/T 21
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4.6.2. Properties of the Normal Distribution

We collect some properties of the multivariate normal density function g.
We suppose that the vector X of n random variables with means zero
and unit variances has a nonsingular normal multivariate distribution with
probability density function

Greeks 9(T1, . T Crty ey ) = (2%)_%”|C|% exp (—EXTCX> . (22)
Contact Information 2

Here C is the inverse of the covariance matrix of X, which is denoted by

p-
mathfinance.de
Theorem 4.2 (Plackett’s Identity, 1954) [10]
Title Page 0 02
R . (23)
apij 8@890]
In the two-dimensional case:
Page 46 of 68 3"2(%% p) 32"2(%95 p)
Go Back p t y
extends to the corresponding cumulative distribution function, i.e.,
Full Screen
ONs(z,y;p)  OPNa(w,y;p)
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4.6.3. Correlation Risk and Cross-Gamma

. . A 52 . .
Using the abbreviation g;, = 83—5’@ the cross-gamma and correlation risk
9

are

i
: 1 dy
__0v e /f _— ﬁ}e«” 6
= ey Yiy oo )Gk
. i k(O)O'jO'kT ( ‘ ) J Hyiai )

05;(0)95,(0) 55(0)S
ov dy
Greeks —
- o g, =Y 27
Contact Information apjk / f( y )gpjk r[yio'i\/F ( )

Invoking Plackett’s identity (23) saying that g,, = g;x leads to

mathfinance.de Theorem 4.3 (cross-gamma-correlation-risk relationship)
Title Page
v v
= 5;(0)Sk(0)o04T s5mmg—- 28
apjk: J( ) k( )UJUkTﬁS](O)ﬁSk(O) ( )

Page 47 of 68

Go Back

Full Screen

Close

Quit



http://www.mathfinance.de/

Accumulative Forward

Instalment Options

Greeks

Contact Information

mathfinance.de

Title Page

Page 48 of 68

Go Back

Full Screen

Close

Quit

4.6.4. Interest Rate Risk and Delta

A similar computation yields

Theorem 4.4 (delta-rho relationship)

ov ov
v - ov
= = <v—;Sj(0)aSj(o)). (30)
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4.6.5. Volatility Risk and Gamma

Theorem 4.5 (gamma-vega relationship)

ov "
O-jaﬁfj = kZ:; pijjUij(O)Sk(O)TaSj(

0)95k(0)°

0%v

(31)
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4.7. Results for European Claims in the Black-Scholes Model
(One-Dimensional Case)

: 1

0 = 7O0+7rp+qp,+ -0® scale invariance of time (32)

’

v = zA+kAF price homogeneity and strikes (33)
Greeks I = kI price homogeneity and strikes (34)
Contact Information tA = —IA price homogeneity and levels (35)

2T +zA = PP+ A! price homogeneity and levels (36)
— p = —1(v—=zA) delta-rho relationship (37)
mathfinance.de
p+p, = —TV rates symmetry (38)
Title Page 1
- v = O+ (r—qzA+ 502:172I‘ Black-Scholes PDE (39)
1
q = O+ (¢—r)kA"+ §a2k2f‘k dual Black-Scholes (strike)
(40)
Page 50 of 68 1
rv = O+ (g—r+a?)IA"+ 502l2f‘l dual Black-Scholes (level)
Go Back
(41)
Full Sereen py = —TxA delta-rho relationship (42)
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® = o72°T gamma-vega relationship (44)
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4.8. A European Claim in the Two-Dimensional
Black-Scholes Model

Relations among the Greeks

0 = po +Si(0)7A,
— 0 = pg + 52(0)TA,,
Contact Information 1 1
0 = qipg + @pg, + 501®1 4 50'2@2 +7rpr + 76,
i p 0 = @ —rv 4+ (7’ — ql)SI(O)Al T (7’ — QQ)SQ(O)AQ
ma nance.de 1 1
- —|—§U%Sl(0)2f’11 + pO’lUgsl(O)SQ(O)Flg + EUSSQ(O)QFQQ,
itle Page
R = 0'10'27'51(0)52(0)P12,
0 = pk—01®1 +02751(0)T 'y,
0 = PR — O'QCI)Q = 0-37-52(0)2].—‘227
Page 51 of 68 0 = 0191 — 029, — U%”'Sl(o)QFn + O'STSQ(O)QFQQ,
Pr = —T (’U — Sl(O)Al — SQ(O)AQ) 5
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0 = Tv—i_pt]l +p¢I2 +p7“'

Full Screen

Close

Quit

—
N
(S

N~—

—
N
-3

N~—

(@)
[ew)]

(@)
N\


http://www.mathfinance.de/

4.9. European Options on the Minimum /Maximum of Two

Assets
6 (nmin(yS(T), nSy(T)) — K" (55)
This is a European put or call on the minimum (7 = +1) or maximum
Greeks (n = —1) of the two assets S1(7") and Sy(T") with strike K. As usual, the
Contact Information binary variable ¢ takes the value +1 for a call and —1 for a put. Its value

mathfinance.de
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function has been published in Stulz [1982] [14] and can be written as

’U(t, Sl(t)a SQ(t)a Ka T7 q1,492,7,01,02, P, d): 77) (56)
= ¢ [Si(t)e” " Na(¢dy, nds; npr)
+S5(t)e™ % Ny (dd, nds; Smps)
e (1=
T B — ke (224 oMl — 1) e — eai0) )|
Contact Information 02 é O% 4+ Ug . 2P010'2, (57)
o A 0020— 01’ (58)
mathfinance.de .
o = 220 (59)
Title Page 9
A In(Si(t)/K) + (r —qi + 500)7
dl - ) (60)
O'1\/F
4, A In(Sy(t)/K) + (r — g2 + %03)77 (61)
0'2\/’7_'
Page 53 of 68 1 9
g A In(Sa(t)/S1(t)) + (@1 — g2 — 50°)7 62
Go Back 3 = O-ﬁ ? ( )
Full Screen d4 é 111(51 (t)/Sg(t)) + (Q2 — 1 — %02)7—. (63)
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4.9.1. Greeks

Delta. Space homogeneity implies that

e v v
= ——— 4+ So(t + K . 64
Wag,m T Was,m T ox (69
Stament o read off the deltas:
- ov
Contact Information _ —q1T .
5 pe” T Na(pdy, nds; gnp1), (65)
ov
= ~RTNo (pda, ndy; , 66
mathfinance.de aSQ(t) ¢e 2(¢ 2 1% ¢77,02) ( )
ov e (11—
Title Page 8_K = _¢€ 2 + ¢N2(77(d1 - 0-1\/;)7 77(d2 - 0-2\/F); p) :

(67)
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Gamma. We use the identities

%Nz(x,y;p) = n(fﬂW(
) Moz i) = nly)N
o9 2o(z,y50) = nly)

and obtain

(921) _ ¢e—Q1T in
IS0 ONG [m e (
_ gn(dy,)./\/ <¢ Udl
v geT T in
IO L—2 A (
_ gn(d4)/\/' <¢ UdQ
0% _ gne™ 1T d;
951050~ Sato v BN <¢ 2

(70)

(72)
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Kappa. The sensitivity with respect to correlation is directly related to
the cross-gamma

Ov 0%v

= = t ) ———.
5p ~ 050 5 5,0 (73)
Vega. We refer to (50) and (51) to get the following formulas for the vegas,
ov _ PYp aF O'%T(Sl (t))2vsl(t)sl(t) (74)
80'1 o1
- di — dsp
= Si(t)e ""\/T n(d o—r OF
1(1) VT [01@7 (d3) <¢ UZM)
ds — dypy
+ n(d)N | no———= 75
(d1) (77 oo/1= 2 ] (75)
ov _ PYp 4 0'%7'(32 (t))QUSZ(t)SQ(t) (76)
60'2 09
= —q2T dy — dyp2
= Sy(t)e”®T/T | padmn(da)N | po———=
01 1-— p2
+ n(d2) N na—d4 — b0 (77)
01 1-— p2
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or

Rho. Looking at (45), (46) and (53) the rhos are given by
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Theta. Among the various ways to compute theta one may use the one
based on (47).

v
ot

1 o o
= _; |:q1’Uq1 = 42V, + TUy + ?1,00'1 + 521}02 . (81)
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4.10. Heston’s Stochastic Volatility Model

as, = 8 [pdt+ ot (82)
do, = K(O—wv)dt+o/o)dW?,  (83)
Instalment Options Cov dVVt(l),dI/Vt@)] — pdt, (84)
Greeks
Contact Information A(S’Uﬂf) = (85)

Heston provides a closed-form solution for European vanilla options paying

mathfinance.de [¢ (ST — K)]+ . (86)

Title Page

As usual, the binary variable ¢ takes the value +1 for a call and —1 for a
put, K the strike in units of the domestic currency
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4.10.1. Abbreviations

a
. U
Accumulative Forward
Instalment Options
Uz
Greeks
Contact Information by
ba
mathfinance.de d]
Title Page
9j
T
D J (T, 90)
Page 60 of 68
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T —i
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filz,v,t,p) 2 Ci(T0)+Dj (1. p)v+iva (98)
B myiyg) 2 %+%/()oom{e_wyff(;;””’¢) do (99)
pleony 2 2[R0 e) d (100)
P, (9) 2 %—I—qﬁPl(lnSt,vt,T,an) (101)
P_(¢) 2 ¥+¢P2(1nst,vt,r,1nf() (102)

This notation is motivated by the fact that the numbers P; are the cumu-
lative distribution functions (in the variable y) of the log-spot price after
time 7 starting at x for some drift p. The numbers p; are the respective
densities.
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4.10.2. Value

The value function for European vanilla options is given by
V=¢ [e*qTStPJr(gb) — Ke*”P,(q&)] (103)

The value function takes the form of the Black-Scholes formula for vanilla
options. The probabilities Py(¢) correspond to N (¢dy) in the constant
volatility case.
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4.10.3. Greeks

Spot delta.
N,
Dual delta.
A2 germp(9)

Gamma.

A 0N BAJzr e

8_St = %ast = St pl(hlSt,Ut,T,lIlK)

r

Dual Gamma.

K A 8AK . aAK ay B e’
= 0K Jy oK Kpl(lnSt;Ut,T,an)

(104)

(105)

(106)

(107)
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Rho. Rho is connected to delta via equations (43) and (42).

0

O = 9K TP (), (108)
oV
G = —#5: TP (@), (109)

Theta. Theta can be computed using the partial differential equation for
the Heston vanilla option

1 1
Vi+ (r—q)SVs + 501}%1; 4 §U52Vss + povSV,s — qV
+[k(0 —v) — AV, =0, )

where the derivatives with respect to initial variance v must be eval-
uated numerically.
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4.11. Summary

e Understand homogeneity-based methods to compute analytical for-

mulas of Greeks for analytically known value functions of options in
a one-and higher-dimensional market
Accumulative Forward

e Restricting the view to the Black-Scholes model there are numerous
further relations between various Greeks

Instalment Options

Greeks

(G [ e e Saving computation time for the mathematician who has to differ-

entiate complicated formulas as well as for the computer, because
analytical results for Greeks are usually faster to evaluate than finite
differences involving at least twice the computation of the option’s
Title Page value

mathfinance.de

e Knowing how the Greeks are related among each other can speed up
finite-difference-, tree-, or Monte Carlo-based computation of Greeks
or lead at least to a quality check

Page 65 of 68

e Many of the results are valid beyond the Black-Scholes model

Go Back e Most remarkably some relations of the Greeks are based on properties

Full Screen of the normal distribution refreshing the active interplay between
mathematics and financial markets.
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5. Contact Information

Uwe Wystup
HfB-Busniness School of Finance and Management

Sonnemanstrafle 9-11
60314 Frankfurt am Main
Germany

aud

Contact Information Commerzbank Securities
Foreign Exchange Options
Mainzer Landstrasse 153
mathfinance.de 60327 Frankfurt am Main
Germany
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