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Abstract

This is a quantitative study of the valuation and hedging of dangerous
options, options whose hedging strategies require unreasonable or risky
short positions of the underlying instrument. We examine the valuation
of many exotic options, when a shortselling constraint is imposed, as an
example for Contingent Claims in Incomplete Markets. The valuation
problem is known to be a stochastic control problem. We examine to
what extend and under which conditions it can be viewed as a singular
stochastic control problem.
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1 Preliminaries

The reader is advised to be familiar with stochastic calculus and Brownian
motion.

1.1 Notation

Throuout we will use the notation

(0) ∆= to define a quantitiy,

(1) a+ ∆= max(a, 0) for the positive part, a− ∆= −min(a, 0) for the negative
part,

(2) a ∧ b ∆= min(a, b), a ∨ b ∆= max(a, b),

(3) IIB(x) ∆=
{

1 if x ∈ B
0 if x 6∈ B for the indicator,

(4) f(t−) ∆= lims↑t f(s) for the left limit, f(t+) ∆= lims↓t f(s) for the right limit,

(5) vx
∆= ∂v

∂x for the partial derivative of a function v,

(6) IE[. . . ] for the expectation, IEx[. . . ] ∆= IE[. . . |S(t) = x],

(7) IN for the natural numbers, IQ for the rational numbers, IR for the real
numbers,

(8) W for a Brownian motion, IP for the Wiener measure on the set of contin-
uous functions on the compact interval [0, T ],

(9) L for the Black-Scholes differential operator, i.e.

Lv(t, x) ∆= vt − rv + rxvx +
1
2
σ2x2vxx

2 A motivating Example: The Up-and-Out Call

To Motivate a general theory on valuation of exotic options under shortselling
constraints we treat a prototype of a dangerous path-dependent option: the up
and out call, which can knock out in the money. This option causes hedging
difficulties for the practitioner, because the hedger needs to take an unbounded
position of the underlying instrument and this position is very unstable near the
barrier. We impose a shortselling constraint of the hedging portfolio, discuss a
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possible analytical solution and show how to hedge. Finally we show that the
valuation problem can be viewed as a singular stochastic control problem. This
will be the basis for the general questions to be answered in the theoretical part.

2.1 The Hedging Problem

We model an underlying instrument, called the ”stock” here, by a stochastic
process S(t). Stock can be anything like equity, commodity, currency, etc.
Given the fair value of an option on the stock is v(t, x), if the stock price is x
at time t, then one usually hedges the option by replication of the payoff at the
expiration time. It is done by holding ∆ = vx(t, x) shares of stock and investing
v(t, x)− xvx(t, x) in the money market. In general this hedging portfolio must
be updated instantaneously over time, and in a ”complete market” [see e.g.
KARATZAS and SHREVE] one can do this as well as holding unlimited positive
or negative quantities of shares and cash. Of course, unrealistic assumptions
can lead to unrealistic option values. For many options, particularly those,
whose payoffs have kinks or (more dramatic:) jumps, the number ∆(t, x), the
”delta” of the option, takes extremely large negative or positive values. For
instance, an at-the-money digital call option one day before expiration, or more
generally all types of barrier options, which can knock in or out in the money.
In practice arbitralily large or small deltas are not acceptable: traders usually
have a limited budget anyway, neither he nor any institution is willing to take
the risk or the demanded amount of shares is just not available. What is the
risk? Let us look at the problem of hedging a short up and out call with strike
K = 1.4000 and barrier B = 1.5000. If the time to expiration T−t = 1day, then
∆(t, 1.4975) = −10 is a realistic setup. Then if one is planning to adjust the
delta every minute all the way up to expiration, one faces immense transaction
costs, because as time changes, delta changes rapidly, even if the stock doesn’t.
If one decides to keep delta unadjusted over night or for a shorter time period,
then two events can happen:

(a) if the stock stays below the barrier, say at 1.4950, then one had taken a
large short postition in vain: one gains 250 pips due to a dropped stock
price, but looses 950 pips, which is the obligation to the holder of the
option. The total loss is 700 pips.

(b) if the stock moves up to 1.5000, then the option knocks out. To close out
the position one needs to buy 10 shares at price 1.5000, so the total loss
is 250 pips.

No matter what happens, the hedger faces guaranteed loss. In a complete
market this risk is not reflected in the option value and therefore not in the
hedge either. We will now illustrate how to find more realistic valuation and
hedging procedures for such dangerous options.

2.2 Portfolio Constraints

To guarantee such extreme situations won’t happen, one must impose portfolio
constraints. A good number to control rather than just the delta is the portfolio
strategy

π(t, x) ∆=
xvx(t, x)
v(t, x)

,
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which reflects the amount invested in the stock, measured in units of the option
value. The portfolio strategy is sometimes called the leverage or the gearing
of the option. The reason is: If the option is already practically worthless,
one wouldn’t worry about hedging it so much. On the other hand, the higher
the option value, the more investment in the stock one would want to allow.
Another advantage is the fact that π(t, x) is dimensionless. Now it is our pleasure
to review the results of [BROADIE, CVITANIĆ and SONER]. Assume the
following standard model for the stock:

dS(t) = S(t)[rdt+ σdW (t)],

where σ is the volatility, r the risk free interest rate, W (t) a Brownian motion
under the risk neutral measure. Generally one tries to value an option given
that π(t, x) takes values in a closed, convex set C, for instance

(a) C = [−α,∞) for some α ≥ 0 reflects a shortselling constraint or a short-
selling prohibition for α = 0.

(b) C = (−∞, α] for some α ≥ 0 reflects a constraint to hold shares or a
prohibition for α = 0.

(c) C = (−∞, 1] reflects the prohibition to borrow from the money market.

(d) C = (−∞,∞) reflects no constraints.

2.3 The Face-Lifting Equation

Define the seller’s cost v(0, S(0), C) of the option with payoff φ(S(T )) to be the
minimal initial amount of money (possibly infinite) which is needed to super-
replicate φ(S(T )) with a self-financing portfolio strategy π(t, x), which satisfies
π(t, x) ∈ C for all t ∈ [0, T ] and all x. The seller’s cost is also called upper
hedging price [KARATZAS and SHREVE]. Super-replication means that we will
have at least φ(S(T )), possibly more, at expiration. We allow super-replication
rather than exact replication, because obeying the portfolio constraint generally
increases the final payoff following the principle: A final payoff with too many
wrinkles has to be sent for face-lifting, before we compute its present value:

v(0, S(0), C) = e−rT IE[φ̂(S(T ))]

Here is the face-lifting equation:

φ̂(x) ∆= sup
ν∈C̃

φ(xe−ν)e−δ(ν),

where
δ(ν) ∆= sup

ν∈C
(−πν)

is the support function of the closed convex set C and

C̃
∆= {ν : δ(ν) <∞}

is its effective domain [see ROCKAFELLAR]. The paper by [BROADIE, CVI-
TANIĆ and SONER] proves this procedure in the multidimensional case, pro-
vides numerous examples for dimensions one and two and suggests a face-lifted
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payoff for lookback options. A general treatment of this procedure can be found
in [KARATZAS and SHREVE], although there are no more explicit examples.
To illuminate it for now, let us do the example of a non-path-dependent up and
out call, which is of interest in our work anyway: Let

φ(x) = (x−K)+II[K,B](x)

for some strike K and barrier B > K. Impose the shortselling constraint
π(t, x) ∈ [−α,∞] for some α ≥ 0. Then δ(ν) = αν and C̃ = [0,∞). A lit-
tle ordinary calculus yields

φ̂(x) =
{

(x−K)+ if x ≤ B,
(Bx )α(B −K) if x ≥ B.

We could in fact compute the value function

v(t, x, C) = e−r(T−t)IE[φ̂(S(T ))|S(t) = x]

and the hedge vx(t, x, C) explicitely and observe that indeed the portfolio con-
straint holds. This constraint can be written in the form

αv(t, x, C) + xvx(t, x, C) ≥ 0.

Before we proceed, let us understand the relation between this constraint and
the face-lifting equation on an intuitive level: If we write the face-lifting equation
as a real function of ν, namely

f(ν) ∆= φ(xe−ν) e−αν != max,

then the first order condition is

f ′(ν) = −e−αν [αφ(xe−ν) + xe−νφ′(xe−ν)] != 0,

or in other words:
αφ(y) + yφ′(y) != 0.

Since φ(y) = v(T, y), we see that the shortselling constraint is imposed with
equality at the final boundary of the region where the Black-Scholes-equation is
defined. One can check then that v(t, x) satisfies the Black-Scholes-equation if
and only if αv(t, x) + xvx(t, x) does. It is now a consequence of the maximum-
principle that the constraint holds inside this region as well, but not necessarily
with equality. The reason why the shortselling constraint is imposed with equal-
ity at the final time is to get the minimality of the value function.
We will now impose this shortselling constraint on the path-dependent up and
out call option. Before we solve it, we would like to give an interpretation from
another point of view:

2.4 Interpretation of the Shortselling Constraint as a Trans-
action Cost Model

We consider the example of a European up and out call option on a stock, which
has a payoff

(S(T )−K)+II{max0≤t≤T S(t)<B}
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at the final time T. Here K is the strike price, B is the barrier and we assume
B > K throughout. As before let v(t, x) be the value of the option at time
t, when the stock price S(t) is x. v(t, x) can be computed explicitely, [see e.g.
RICH]. It is also known that v(t, x) is determined by the following:

−rv + vt + rxvx +
1
2
σ2x2vxx = 0

v(t, B) = 0
v(T, x) = (x−K)+II{x<B}

The shortselling constraint we impose has been suggested first in [SHREVE],
however, it had a quite different interpretation: The usual delta hedge suggests
to hold ∆(t, x) ∆= vx(t, x) shares of stock at time t when the stock price is x.
Since we want to hedge a short position, ∆(t, x) is negative near the barrier,
and it turns out that it is unbounded near the barrier for t close to expiration
as well. Thus it could be possible that the hedger would have to short sell a
large amount of stocks. Since the gamma vxx(t, x) is also unbounded near the
barrier, he would be in a very unstable situation: Either trading large amounts
of stocks which causes substantial transaction costs. Or deciding to take only a
bounded short position and do no further trading, in which case he would need
some extra cash to close out his position if the stock moves up and crosses the
barrier. To implement this in the model, S. Shreve has suggested to replace
the boundary condition v(t, B) = 0 by Bvx(t, B) = −αv(t, B). Bvx(t, B) is
the dollar amount invested in the stock (a large negative number), if the stock
price is near the barrier, and the value of the option should compensate losing
a fraction 1

α of this. Here the free nonnegative parameter α should reflect how
much extra cash is needed: The less we need, the larger we must choose α. Only
later we will prove that this α is actually the same as the shortselling parameter,
which we have called α before as well. Now we are looking for a solution of the
partial differential equation

−rv + vt + rxvx +
1
2
σ2x2vxx = 0, 0 ≤ t < T, 0 < x < B

αv(t, B) +Bvx(t, B) = 0, 0 ≤ t ≤ T

v(T, x) = (x−K)+, 0 ≤ x ≤ B

2.5 Explicit Solution for the Constrained Up-and-Out Call

To find the solution let
M(t) ∆= max

0≤u≤t
S(u).

We define the value of an auxiliary contingent claim by

w(t, x) ∆= IE
[
e−r(T−t)[(1 + α)S(T )− αK]II{S(T )≥K}II{M(T )<B}|St = x

]
,

where we take the expectation under the risk neutral measure which makesW (t)
a Brownian motion. Now we can list some properties of w(t, x):

(i) e−rtw(t, S(t)) is a martingale, and therefore

(ii) w(t, x) satisfies the Black-Scholes partial differential equation.
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(iii) w(t, B) = 0

(iv) 0 ≤ w(t, x) ≤ (1 + α)x and thus w(t, 0) = 0

(v) w(T, x) = [(1 + α)x− αK]II{x≥K}II{x<B}

(vi) w(t, x) is continuous on [0, T ]× [0, B].

Now we can define

v(t, x;α) ∆=
∫ 1

0

yα−1w(t, xy)dy

and derive a list of properties of v(t, x;α):

(i) v(t, x;α) satisfies the Black-Scholes partial differential equation.

(ii) 0 ≤ v(t, x;α) ≤ x and thus v(t, 0;α) = 0.

(iii) xvx(t, x;α) + αv(t, x;α) = w(t, x) and therefore in particular

(iv) Bvx(t, B;α) + αv(t, B;α) = 0.

(v) v(T, x;α) = (x−K)+, 0 ≤ x ≤ B

(vi) v(t, B;α) =
∫ 1

0
yα−1w(t, By)dy

(vii) v(t, x;α) is continuous on [0, T ]× [0, B].

(viii) limx→0 xvx(t, x) = 0

(ix) v(t, x;α) > v(t, x;∞) ∆= v(t, x) (follows from the maximum principle)

(x) limα→∞ v(t, x;α) = v(t, x), as we will expect and see below.

Here we mean by v(t, x) the value function of an up and out European call with
the boundary condition v(t, B) = 0. In particular we learn that this v(t, x;α)
does solve the problem: it superreplicates the payoff and satisfies the shortselling
constraint. v(t, x;α) is the value function of an up and out European call option
with a relaxed boundary condition at the barrier, and it has all the properties
stated above. One would delta-hedge this option by holding vx(t, x;α) shares
of stock at time t, if the stock price at time t is x.
In the following, we will use the definition of v(t, x;α) to compute it explicitely.
To do this, we need w first. Observe that (M(t), S(t)) is a Markov-process,
and the payoff of w at expiration is a function of (M(T ), S(T )). In addition,
the value of M(T ) as such is not needed, we only need to know, whether it is
below or above the barrier. We know that w = 0 in the latter case. In the
other case it is sufficient to compute w(0, x) as a function of T and afterwards
replace T by T−t to obtain w(t, x). Fortunately the joint density of the random
pair (max0≤t≤T W (t),W (T )) is known for a standard Brownian motion W (t)
without drift. It is a straightforward application of the reflection principle. If we
include a drift θ− by setting W̃ (t) ∆= W (t) + θ−t and M̃(T ) ∆= max0≤t≤T W̃ (t),
then we can do a change of measure to obtain the joint density for the pair
(M̃(T ), W̃ (T )):

f(m̃, w̃) = exp(θ−w̃ −
1
2
θ2−T )

2(2m̃− w̃)
T
√

2πT
exp

(
− (2m̃− w̃)2

2T

)
,
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m̃ > 0, w̃ < m̃, θ±
∆=
r

σ
± σ

2
.

This is formula 1.1.8. of [BORODIN and SALMINEN 2.1]. Hence, we are able
to compute the expected value as an integral:

w(0, S0) = e−rT
∫ m

b

∫ m

x

[(1 + α)S0e
σx − αK]f(y, x) dy dx

= (1 + α)S0

[
N (

m− θ+T√
T

)−N (
b− θ+T√

T
)
]

+ (1 + α)S0e
2mθ+

[
N (

m+ θ+T√
T

)−N (
2m− b+ θ+T√

T
)
]

− αKe−rT
[
N (

m− θ−T√
T

)−N (
b− θ−T√

T
)
]

− αKe−rT e2mθ−
[
N (

m+ θ−T√
T

)−N (
2m− b+ θ−T√

T
)
]
.

Here N (x) ∆=
∫ x
−∞

1√
2π
e−

u2
2 du is the cumulative distribution function of a stan-

dard normal random variable and we abbreviate m ∆= 1
σ log B

S0
and b ∆= 1

σ log K
S0

.
Finally, it turns out that the integration needed to find v can be performed as
well, and the result is

v(t, x;α) = x

[
N
(
m√
τ
− θ+

√
τ

)
−N

(
b√
τ
− θ+

√
τ

)
+ e

1
2 sτ(s−2θ+){

esmN
(
−m√
τ

+ (θ+ − s)
√
τ

)
− esbN

(
−b√
τ

+ (θ+ − s)
√
τ

)}]
+xe2mθ+

s

s− 2θ+

[
N
(
m√
τ

+ θ+
√
τ

)
−N

(
l√
τ

+ θ+
√
τ

)
+ e

1
2 sτ(s−2θ+){

e(s−2θ+)mN
(
−m√
τ

+ (θ+ − s)
√
τ

)
− e(s−2θ+)lN

(
−l√
τ

+ (θ+ − s)
√
τ

)}]
−Ke−rτ

[
N
(
m√
τ
− θ−

√
τ

)
−N

(
b√
τ
− θ−

√
τ

)
+ e

1
2 s̃τ(s̃−2θ−){

es̃mN
(
−m√
τ

+ (θ− − s̃)
√
τ

)
− es̃bN

(
−b√
τ

+ (θ− − s̃)
√
τ

)}]
−Ke−rτe2mθ− s̃

s̃− 2θ−

[
N
(
m√
τ

+ θ−
√
τ

)
−N

(
l√
τ

+ θ−
√
τ

)
+ e

1
2 s̃τ(s̃−2θ−){

e(s̃−2θ−)mN
(
−m√
τ

+ (θ− − s̃)
√
τ

)
− e(s̃−2θ−)lN

(
−l√
τ

+ (θ− − s̃)
√
τ

)}]

Here we abbreviate τ ∆= T−t, m ∆= 1
σ log B

x , b ∆= 1
σ log K

x , l ∆= 2m−b, s = (1+α)σ,
s̃ = ασ. Notice that in the second and in the fourth summand the denominator
s−2θ+ or s̃−2θ− could be zero for α = 2r

σ2 or α = 2r
σ2 −1 respectively. However,

these are both removable discontinuities, and in fact one can apply l’Hôpital’s
rule to find the correct equation for these two points. Additionally we have so
much freedom to choose α, that it is not worth putting another equation down,
which is not more illuminating than the above.
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From the equation it follows that v(t, x;α) = v(t, x) + u(t, x;α) , where the
supplement u(t, x;α) > 0 can be interpreted as a premium of an insurance for
bounded leverage. (See below for a rebate interpretation of this supplement.)
We can also derive that limα→∞ v(t, x;α) = v(t, x).
To extend the formula to the case with dividends or foreign interest rates, replace
r by rd− rf in both θ+ and θ−, replace x by xe−rfτ and replace e−rτ by e−rdτ .
Here, rd stands for domestic interest rate and rf stands for foreign interest rate,
which could be a continuously paid dividend rate as well.

2.6 Comparative Statics

For practical use it seems handy to list some greek variables. Fortunately the
auxiliary claim w helps us again:

Delta Solving the equation xvx(t, x;α) + αv(t, x;α) = w(t, x;α) yields

∆(t, x;α) =
w(t, x;α)− αv(t, x;α)

x

immediately. We can use known results. The range for the relative delta
at the barrier is clearly

Bvx(t, B;α)
v(t, B;α)

∈ {−α}.

Gamma Since Γ(t, x;α) = ∂
∂x∆(t, x;α), we can use the same trick again and

get

Γ(t, x;α) =
xwx(t, x;α)− (1 + α)w(t, x;α) + α(1 + α)v(t, x;α)

x2

All we need is the delta for the auxiliary claim w. Here it is:

wx(t, x;α) = (1 + α)
[
N (

m− θ+τ√
τ

)−N (
b− θ+τ√

τ
)
]

−1 + α

σ
√
τ

[
N ′(

m− θ+τ√
τ

)−N ′(
b− θ+τ√

τ
)
]

−2r(1 + α)e2mθ+

σ2

[
N (

m+ θ+τ√
τ

)−N (
2m− b+ θ+τ√

τ
)
]

− (1 + α)e2mθ+

σ
√
τ

[
N ′(

m+ θ+τ√
τ

)−N ′(
2m− b+ θ+τ√

τ
)
]

+
αKe−rτ

xσ
√
τ

[
N ′(

m− θ−τ√
τ

)−N ′(
b− θ−τ√

τ
)
]

+
2αθ−Ke−rτe2mθ−

xσ

[
N (

m+ θ−τ√
τ

)−N (
2m− b+ θ−τ√

τ
)
]

+
αKe−rτe2mθ−

xσ
√
τ

[
N ′(

m+ θ−τ√
τ

)−N ′(
2m− b+ θ−τ√

τ
)
]

Here we abbreviate again τ ∆= T − t, m ∆= 1
σ log B

x and b ∆= 1
σ log K

x .
What is the range for gamma at the barrier? From above we get for x = B

vxx(t, B;α) =
wx(t, B;α)

B
+ α(1 + α)

v(t, B;α)
B2

.
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Since the boundary condition v(t, B;α) has range (0, B−K], we can obtain
a relative gamma

B2vxx(t, B;α)
v(t, B;α)

= α(1 + α) +
Bwx(t, B;α)
v(t, B;α)

≤ α(1 + α),

because the delta of w must be negative at the barrier. We can also say
that, as time approaches expiration, this delta must become arbitrarily
small. We conclude that

B2vxx(t, B;α)
v(t, B;α)

∈ (−∞, α(1 + α)].

Theta Using the Black-Scholes partial differential equation

vt = rdv − (rd − rf )xvx −
1
2
σ2x2vxx

and setting β ∆= σ2

2 (1 + α)− (rd − rf ) implies

Θ(t, x;α) = −σ
2

2
xwx + βw + (rd − αβ)v.

2.7 Minimality

Combining properties (iv) for w and (iii) for v, we conclude that v satisfies
the portfolio constraint everywhere below the barrier and with equality at the
barrier. We will now demonstrate that the function v derived above is the
smallest function satisfying the portfolio constraint. To do this, we show that
any other function ṽ(t, x;α), which satisfies

• the Black-Scholes partial differential equation,

• ṽ(T, x;α) = v(T, x;α)

• and the constraint αṽ(t, x;α) + xṽx(t, x;α) ≥ 0

can not be less than v(t, x;α). Since ṽ also satisfies the portfolio constraint at the
barrier, but perhaps not with equality, let αṽ(t, B;α)+Bṽx(t, B;α) ∆= g(t) ≥ 0.
Then ṽ can be characterized in the same way as v, namely by defining

ṽ(t, x;α) ∆=
∫ 1

0

yα−1w̃(t, xy)dy

where

(i) w̃(t, x;α) satisfies the Black-Scholes partial differential equation.

(ii) w̃(T, x) = w(T, x).

(iii) w̃(t, 0) = w(t, 0) = 0.

(iv) w̃(t, B) = g(t) ≥ 0 = w(t, B).

As before we conclude that

12



(i) ṽ(t, x;α) satisfies the Black-Scholes partial differential equation.

(ii) ṽ(T, x) = v(T, x).

(iii) ṽ(t, 0) = v(t, 0) = 0.

(iv) αṽ(t, x;α) + xṽx(t, x;α) = w̃(t, x) and hence

(v) αṽ(t, B;α) +Bṽx(t, B;α) = w̃(t, B) = g(t).

Since by the maximum principle, w̃ ≥ w, we can deduce

ṽ(t, x, α) =
∫ 1

0

yα−1w̃(t, xy)dy ≥
∫ 1

0

yα−1w(t, xy)dy = v(t, x;α).

Notice that w̃ can be viewed as an auxiliary up and out option with rebate g(t),
whereas w does not have a rebate. The option with the rebate must be worth at
least as much as the option without the rebate. This is the maximum principle
in terms of finance. In fact, if

τ
∆= inf{t : S(t) = B}

then for M(t) < B

w̃(t, x) = IE
[
e−r(T−t)[(1 + α)S(T )− αK]II{S(T )≥K}II{M(T )<B}

+ e−r(τ−t)g(τ)II{τ≤T}
∣∣∣St = x

]
and e−rtw̃(t, S(t),M(t)) is a martingale.
Result: The cheapest way to hedge without going too short in the stock is
derived from the function v, even though one may not believe how much more
expensive it is compared to the unconstrained option. The difference v(t, x;α)−
v(t, x) describes the hedging difficulty quantitatively. It is a significant differ-
ence. As a trading institution one should not get scared at this point, because
in our example we have isolated just one single option. In practice, however,
one trades a whole book of options and one would then impose the shortselling
constraint on the entire book. In this case the differences will usually be smaller.
To get an idea, we will study a book of two up-and-out call options later in the
examples.

2.8 v(t, x; α) as a Solution to a Singular Stochastic Control
Problem

We set up the following stochastic control problem: Let us allow to push the
geometric Brownian motion down in a possibly singular way:

dS(t) = rS(t)dt+ σS(t)dW (t)− S(t)dλ(t)

or equivalently for t ≥ u

S(t) = S(u) exp
[
σ(W (t)−W (u)) + (r − 1

2
σ2)(t− u)− (λ(t)− λ(u))

]

13



for an adapted nondecreasing control process λ starting at zero. We do not
allow the control to push up, because the effective domain C̃ = [0,∞), and we
are looking for results in the same framework as in [KARATZAS and SHREVE].
To model the knock out feature, we introduce the function

h(x) ∆=
{

0 if x ≤ B,
−∞ if x > B.

Now we can define v(t, x;α) as

sup
λ
IE

[
e−r(T−t)−α(λ(T )−λ(t))φ(S(T )) +

∫ T

t

e−ru−αλ(u)h(S(u))du

∣∣∣∣∣S(t) = x

]

Here φ depends only on the final value of the stock, e.g. φ(x) = (x−K)+II{x≤B}.
The path-dependency of the payoff has been written using the function h. To
interpret this, observe that λ should push the stock price down, if it gets above
the barrier, because otherwise the function h will cause a negative infinite an-
swer. But it should push with minimal effort, because it causes discounting. If
λ pushes more than absolutely necessary, the supremum will not be achieved.
We have called this supremum v(t, x;α). In the following we will establish that
the explicit value function v defined by the list of properties above can in fact
be written as the stated supremum. We are free to pose conditions for x > B.
To make v and vx continuous, we extend the boundary condition:

αv(t, x;α) + xvx(t, x;α) = 0, 0 ≤ t ≤ T, x ≥ B.

We do not expect vxx to be continuous at the barrier, but Itô’s rule holds even
without that. Now define

Y (t) ∆= e−rt−αλ(t)v(t, S(t);α) +
∫ t

0

e−ru−αλ(u)h(S(u))du.

It will turn out that Y (t) is a supermartingale for all controls λ and a martingale
for the optimal control which we will call λ∗. We compute the differential:

dY (t) = e−rt−αλ(t)

{−w(t, S(t))dλ(t) + σS(t)vx(t, S(t);α)dW (t) + Lv(t, S(t);α)dt+ h(S(t))dt}

L is the Black-Scholes differential operator:

L(v(t, x)) ∆= vt − rv + rxvx +
1
2
σ2x2vxx

We will now integrate between t and T and take expectations conditioned
on S(t) = x. The Itô-integrand σS(t)vx(t, S(t);α) takes values in [−α(B −
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K), σS(t)], whence its integral is a martingale.

IEx[Y (T )]− IEx[Y (t)]

= −e−rt−αλ(t)v(t, x;α) + IEx

[
e−rT−αλ(T )φ(S(T )) +

∫ T

t

e−ru−αλ(u)h(S(u))du

]

= −Ex
[∫ T

t

e−ru−αλ(u)w(u, S(u))dλ(u)

]

+Ex
[∫ T

t

e−ru−αλ(u)Lv(u, S(u);α)du

]
+ Ex

[∫ T

t

e−ru−αλ(u)h(S(u))du

]

≤ Ex

[∫ T

t

e−ru−αλ(u)(Lv(u, S(u);α) + h(S(u)))du

]

≤ Ex

[∫ T

t

e−ru−αλ(u)Lv(u, S(u);α)II{S(u)=B}du

]
= 0.

We have used that w is nonnegative, Lv + h = 0 below B and S(t) does not
spend any time at the barrier. We conclude that for all control processes λ

v(t, x;α) ≥ IEx

[
e−r(T−t)−α(λ(T )−λ(t))φ(S(T )) +

∫ T

t

e−ru−αλ(u)h(S(u))du

]
.

On reviewing the above computation, we realize that all inequality signs do
actually become equal signs, if we choose the control

λ∗(t) ∆= sup
0≤u≤t

(logS(u)− logB)+

which only grows if S(t) equals B. λ∗(t) has singularly continuous paths, which
gives our control problem its name. Recall that a real function f is called
singular, if f ′ = 0 almost everywhere. For this optimal control process λ∗(t), h
is always zero and S is never above B. Finally, we replace the function h by the
original path-dependent payoff and obtain

v(t, x;α) = sup
λ
IEx

[
e−r(T−t)−α(λ(T )−λ(t))[S(T )−K]+II{max0≤u≤T S(u)≤B}

]
Remember that S(t) depends on λ. We can also write down the same equation
using the original S(t):

v(t, x;α) = sup
λ
IEx

[
e−r(T−t)−α(λ(T )−λ(t))[S(T )e−λ(T ) −K]+II{S(u)e−λ(u)≤B∀u}

]
Let us check the continuity of vxx at the barrier: We have extended v above the
barrier such that αv(t, x;α) + xvx(t, x;α) = 0 and therefore

v(t, x;α) = v(t, B;α)(
B

x
)α.
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It follows that

vx(t, x;α) = −α
x
v(t, B;α)(

B

x
)α

vxx(t, x;α) =
α(α+ 1)

x2
v(t, B;α)(

B

x
)α.

We read off a relative gamma

x2vxx(t, x;α)
v(t, x;α)

= α(α+ 1)

for all x above B and in particular as x goes down to B. However, we have noted
before that the range of the relative gamma at the barrier is (−∞, α(α + 1)].
So indeed, vxx is not continuous at the barrier for this choice of the extension.
One may be warned that this is the reason, why we can not plug this v above
the barrier into the Black-Scholes differential equation to derive properties of
vxx at the barrier.
To put this optimal control view into the framework of [BROADIE, CVITANIĆ
and SONER], let us come back to the non-path-dependent up and out call. Its
value function can be written as

v(t, x;α) = sup
λ
IEx

[
e−r(T−t)−α(λ(T )−λ(t−))[S(T )−K]+II{S(T )≤B}

]
Here the maximizing control is

λ∗(t) ∆= (logS(T )− logB)+II{t=T},

which is strikingly similar to the path-dependent one. We learn that in the non-
path-dependent case, the control only acts at the final time, it pushes the stock
down to the barrier if the stock is above the barrier and does not act otherwise.
λ∗ does not create any unnecessary discounting prior to the final time, because
there is still a chance that the stock will end below the barrier, in which case
it need not have pushed. It is time to point out here that we expect to find
maximizing controls only in the set of adapted nondecreasing right-continuous
processes starting at zero. Typically they are singular.

2.9 “Moving the barrier”

One of the most common answers of professionals to the question how they
hedge a barrier option when the stock gets close to the barrier is ”moving the
barrier” up and do the valuation with this auxiliary barrier. We will now learn
that this procedure agrees with imposing a shortselling constraint up to first
order. In fact, our value function v(t, x;α) allows a justification of this custom
and even a simple formula for the auxiliary barrier: We extend v above the
barrier, such that it still satisfies the Black-Scholes differential equation. Then
v(t, x;α) will be zero at some spot x(t) for each t. x(t) is the correct, but time
dependent auxiliary barrier, which one should use, together with the auxiliary
terminal condition v(T, x;α) for B ≤ x ≤ x(T ), to produce a value function for
the original barrier option, which satisfies the constraint below the barrier. It
does not satisfy the constraint above the barrier, but after the option knocks
out, this doesn’t matter anymore. x(t) is time dependent, but it is ”almost”
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constant over time. A very close constant approximation x0(t) can be obtained,
if we extrapolate v(t, x;α) linearly above the barrier and choose x0(t) such that
0 = v(t, x0(t);α):

v(t, x0(t);α) = v(t, B;α) + vx(t, B;α)(x0(t)−B)

= vx(t, B;α)
(
−B
α

+ x0(t)−B

)
for α > 0. In this case vx(t, B;α) < 0, which allows us to conclude that the
curve x0(t), where v(t, x0(t), α) = 0 is a constant:

x0(t) = B
1 + α

α

This is the auxiliary barrier, which one should use, together with a linear termi-
nal condition, to produce a value function which satisfies the portfolio constraint
approximatively. Finally observe that extending v above the barrier by requir-
ing the constraint to hold with equality will yield v(t, x;α) = v(t, B;α)(Bx )α,
and in this case v will not be zero anywhere above the barrier.

2.10 Interpretation of v(t, B; α) as a rebate

In most of the finance literature barrier options usually have rebate features.
Traded barrier options, however, are normally sold without any rebate agree-
ments, mainly because options without rebate are cheaper than options with
rebate, and secondly because a rebate is actually just a path-dependent digital
option which can be separated easily from the barrier option and will be sold
separately, if the need really occurs. For an out option a rebate agreement means
that a sum R is paid from the seller of the option to the holder of the option, if
the option knocks out. There are two kinds of agreements: (a) The rebate can
be paid at expiry T , in which case the boundary condition of the Black-Scholes
differential equation is v(t, B) = Re−r(T−t), or (b) the rebate can be paid at
the first time τ the barrier is hit, in which case the corresponding boundary
condition becomes v(t, B) = R. Both types can be viewed as an approximation
to the function v(t, B;α). In any case, including such rebate features makes
hedging easier, which could be one of the reasons as to why they were invented.
The particular choice of the rebate v(t, x;α) is actually in favour of both the
seller as well as the holder of the option: It is favourable for the seller, because
it is exactly the kind of rebate one should specify in order to obey the portfolio
constraint and for the holder, because his risk is small for times long before
expiration and large for times near expiration.

2.11 List of Charts

We use these values for the parameters: K = 1.4000, B = 1.5000, σ = 8%, rd =
5%, rf = 3%, T = 50 days, α = 50.

(1) value of the unconstrained up and out call (without rebate)

(2) delta of the unconstrained up and out call (without rebate)
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(3) gamma of the unconstrained up and out call (without rebate)

(4) theta of the unconstrained up and out call (without rebate)

(5) value of the unconstrained up and out call (with rebate paid at the end)

(6) value of the constrained up and out call

(7) delta of the constrained up and out call

(8) gamma of the constrained up and out call

(9) theta of the constrained up and out call

(10) difference of value functions of the constrained and the unconstrained up
and out call

(11) difference of deltas of the constrained and the unconstrained up and out
call

(12) value of the auxiliary up and out call

(13) delta of the auxiliary up and out call

(14) convergence of the constrained to the unconstrained call as α gets large

(15) relative gamma at the barrier

(16) rebate comparison and boundary condition v(t, B;α)

(17) where to move the barrier

3 Overview of the Theoretical Results

3.1 Review of Existing Results

Pricing and Hedging of Contingent Claims in ideal complete and unconstraint
markets has been understood very well. It is based on the fundamental principle
of “absence of arbitrage opportunities.” This price is called the Black-Scholes
price [BLACK and SCHOLES, 1973], [MERTON, 1973]. We refer the reader
to the article “On the pricing of Contingent Claims under Constraints (1996)”
by Karatzas and Kou for a brief survey or the monograph “Methods of Mathe-
matical Finance (1998)” by Karatzas and Shreve for a detailed discussion of the
knowledge up to date. What we learn from there is that the price of a contingent
claim is the unique one for which there are no arbitrage opportunities by taking
either a short or a long position in the claim and investing wisely in the market.
This price coincides with the minimal initial capital, starting with which one
can exactly replicate the claim at the time of execution, and also with the expec-
tation of the claim’s discounted value under the unique, “risk-neutral” equiv-
alent probability measure [HARRISON and PLISKA (1981)],[HARRISON and
KREPS (1979)], [COX and ROSS (1976)]. The well-known argument leading to
these results is essentially based on the martingale representation theorem and
the Girsanov change of measure theorem from stochastic analysis [KARATZAS
and SHREVE (1988)], [KARATZAS (1989)]. It has been pointed out that in the
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presence of constraints on portfolio choice there is no such unique price based
solely on the principle of absence of arbitrage [KARATZAS and KOU, 1996].
One can only say that the unconstrained price lies between the so-called “lower
hedging price” and “upper hedging price”. The upper hedging price is the least
price the seller can accept without the risk to violate the portfolio constraint.
The lower hedging price is the greatest price the buyer can afford without the
risk to violate the portfolio constraint. In the case of convex constraints on the
portfolio choice, lower and upper hedging price can be characterized as a cer-
tain stochastic control problem, see additionally [CVITANIĆ and KARATZAS,
1993]. They point out that under appropriate conditions, it is possible to repli-
cate contingent claims even with constrained portfolios, albeit some additional
consumption may be necessary. [NAIK and UPPAL (1994)] first studied the
effects of leverage constraints on the pricing and hedging of stock and bond
options in discrete time. In the case of path-independent options [BROADIE,
CVITANIĆ and SONER (1997)] extend these ideas and show that the upper
hedging price can be found by pricing an appropriately increased dominating
claim. We call this procedure face-lifting. [CVITANIĆ, PHAM and TOUZI
(1997)] extend these ideas to a stochastic volatility model.

The main issues of this dissertation are a visualization of this stochastic control
problem, an interpretation of this problem as a singular stochastic control prob-
lem and its application to exotic options. As an example for a constraint we put
a shortselling constraint on the leverage and consider path-dependent European
Contingent Claims. In a constant coefficient geometric Brownian motion model
we are able to characterize many exotic options as solutions to certain partial
differential equations (Lookback Put, Asian Put, Book of Barrier Options) or
even compute prices analytically (Up and Out Call and Put Options). Our
theory will clarify some of the relevant issues of lower and upper semicontinuity
of the contingent claims, which have so far been neglected in the literature,
and it will illuminate, why the wonderful results of [BROADIE, CVITANIĆ and
SONER] are right: Allowing control processes to look like they typically are,
namely singularly right-continuous, sheds more light on their ideas.

3.2 The New Discoveries

We work on the probability space (Ω,F , IP ), where Ω = C[0, T ] is the space of
continuous functions on the interval [0, T ] and IP is the Wiener measure. We
let Ft be the (augmented) Brownian filtration and {W (t)}0≤t≤T be a Brownian
motion, adapted to this filtration. Our basis is a constant coefficient geometric
Brownian motion as a model for the underlying instrument, called the“stock”:

dS(t) = S(t)[rdt+ σdW (t)].

r is the risk-free rate, σ > 0 the volatility of the stock. Note that for instructional
reasons we started with a stock, whose mean rate of return is already equal to
the risk-free rate r. We will consider contingent claims F ≥ 0 of the form
F = g(S(·)) = g({S(t)}0≤t≤T ). To find the value of F at time zero, one usually
comes up with an F -replicating strategy (π(t, St), C(t)), where π(t, x) is the
number of shares of stock to hold at time t, if the stock price is x, and C(t) is
the consumption up to time t. This generates the portfolio value process V (t)
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following the evolution

dV (t) = π(t, St)dSt + r(V (t)− π(t, St)St)dt
= rV (t)dt+ σπ(t, St)StdW (t)

In a complete market the consumption process is zero. We consider our market
incomplete in the sense that a shortselling constraint on the gearing, namely

Stπ(t, St)
V (t)

≥ −α, α ≥ 0, (1)

is imposed. Exact F -repliction may now not work anymore, because it could
potentially violate the shortselling constraint. Thus we admit a nondecrasing
right-continuous aggregate consumption process C(t) staring at zero. Alterna-
tively we don’t consume and then talk about F -superreplication. We want to
clarify in this thesis what is the upper hedging price of F subject to the short-
selling constraint. Our final vision is to view the constrained valuation problem
of F as a nonconstrained valuation problem of a face-lifted dominating F̂ , sim-
ilar to the procedure for path-independent options provided by [BROADIE,
CVITANIĆ and SONER]. To get a definition of this F̂ , we need a maximizing
control process λ∗ and would then define

F̂
∆= e−αλ

∗(T )g
(
Se−λ

∗
)
. (2)

In order to be able to state this definition we need to look for maximizing control
processes in a sufficiently large class. We believe that this class is the collection of
all adapted nondecreasing right-continuous processes starting at zero. Our start-
ing point is the following Main Hedging Result by [CVITANIĆ and KARATZAS,
Hedging Contingent Claims, Theorem 6.4.], later presented in [KARATZAS
and KOU, Pricing Contigent Claims, Theorem 6.1] and in [KARATZAS and
SHREVE: Methods of Mathematical Finance, Theorem 5.6.2]:

Theorem 3.1 The upper hedging price is

sup
λ
IEλ

[
e−rT−αλ(T )g

(
S0e

σWλ+µ−λ)] ,
where we maximize over all adapted, nondecreasing absolutely continuous control
processes λ starting at zero, whose derivatives are uniformly bounded.

The Brownian motion Wλ has been defined to be

Wλ(t)
∆= W (t) +

1
σ
λ(t),

and the expectation is to be taken under the probability measure IPλ defined as

IPλ[A] ∆=
∫
A

Zλ(T ) dIP ∀ A ∈ FT ,

where the density process Zλ(t) is

Zλ(t)
∆= exp

{
− 1
σ

∫ t

0

λ′(s) dW (s)− 1
2σ2

∫ t

0

(λ′(s))2 ds
}
.
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One of the problems is that this formulation of the main hedging result really
stretches our imagination: We are maximizing over changes of measure, a rather
non-transparent procedure. Our new new version of the main hedging result
basically says that we do not need the subscript λ at IE and W , i.e. we will
show that the upper hedging price can be written as

sup
λ
IE
[
e−rT−αλ(T )g

(
S0e

σW+µ−λ)] .
We can now view the constraint valuation problem as a maximization over
processes with absolutely continuous nondecreasing paths that have bounded
derivatives and conveniently forget that a change of measure has ever taken
place. The control problem has been visualized! The fact that all our exam-
ples show maximizing control processes that have singular nondecreasing paths
motivates us to go on and show that we really only need to maximize over
continuous controls:

Theorem 3.2 If F is lower semicontinuous, then the upper hedging price is

sup
λ
IE
[
e−rT−αλ(T )g

(
S0e

σW+µ−λ)] ,
where we maximize over all adapted, nondecreasing (possibly singularly) contin-
uous control processes λ starting at zero.

The lower semicontinuity of F is not a necessary condition, but if F is not
lower semicontinuous, the theorem may fail at some starting points S0. We
prove this theorem by constructing a sequence of absolutely continuous controls
which approximate a given continuous control. Essentially we take pathwise
truncated left-mollifications.
We need to extend the class of potential maximizing control processes even more,
because the examples of path-independent options show maximizing controls
with a jump at the final time T . The example of the Up-and-Out Put teaches
us, that we must admit a combination of singularly continuous processes and
a final time jump. Moreover, the example of the realistic Up-and-Out Call
indicates that jumps can happen basically any time. The result is

Theorem 3.3 If F is lower semicontinuous, then the upper hedging price is

sup
λ
IE
[
e−rT−αλ(T )g

(
S0e

σW+µ−λ)] ,
where we maximize over all adapted, nondecreasing right-continuous control pro-
cesses λ starting at zero.

In principle, the proof will be the same as in the previous extension to continuous
controls, namely we approximate a given right-continuous control with jumps by
continuous controls. The construction, however, is much more difficult, because
we need to capture the jumps in the approximation without being allowed to
look ahead (adaptivity!). The property that saves us is the right-continuity of
the (augmented) Brownian filtration , which allows us to look infinitesimally far
ahead and thus actually to predict a future jump with increasing precision as
we get closer. The details of this construction are rather technical.
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To formulate the last theorem, we need some extension of g, which is first of
all defined even for path with jumps, secondly lower semicontinuous and thirdly
agrees with the original g on continuous paths. Ideally we would like to have
identifiable such g’s. We give the details in the next section and advise the
reader at this stage to ignore that g is potentially undefined.
We have extended the class of potential maximizers sufficiently much. The
remaining problem we are worried about is, that a good assumption for existence
of maximizers would be upper semicontinuity of the contingent claim g rather
than lower semicontinuity. For continuous payoffs we don’t have this problem
and we get

Corollary 3.4 For a large class of options g, including all path-independent
options, options which depend continuously on the final stock-price, the maxi-
mal stock-price, the minimal stock-price and the average stock-price, the upper
hedging price is

sup
λ
IE
[
e−rT−αλ(T )g

(
S0e

σW+µ−λ)] ,
where we maximize over all adapted, nondecreasing right-continuous control pro-
cesses λ starting at zero.

Here, the payoff function g is defined even for stock price paths with jumps, in
fact it is the same as the given g.
The assumption of continuity helps a lot to get nice results, but it is unfortu-
nately not a realistic assumption. Digital and Barrier options for example don’t
fall under the class of options of our corollary. In the following part of the dis-
sertation we examine how important lower semicontinuity actually is, and one
result here is

Theorem 3.5 If F is lower semicontinuous, then the upper hedging price de-
pends lower semicontinuously on the initial stock price S0 (no matter which of
the above theorems we use to compute it).

Our conjecture is that if we start with the upper semicontinuous version of
F , the upper hedging price (as a function of the initial stock price S0) is the
upper semicontinuous version of the upper hedging price we get for the lower
semicontinuous version of F . A clarificatin of this statement will be provided
for path-independent options. We could cover path-dependent options only in
the example section. Let F = φ(ST ). Then we prove

Theorem 3.6 If φ is lower semicontinuous, then the face-lifted φ̂ is also lower
semicontinuous.

If φ is not lower semicontinuous, then face-lifting does not necessarily produce
the correct value function (see our example of the Cactus Option). On the other
hand, we would really like to take an upper semicontinuous φ, because then we
get the following

Theorem 3.7 If φ is upper semicontinuous, then there exists for each x ∈
[0,∞) a maximizing number λ∗(x) ∈ [0,∞] such that

φ̂(x) = e−αλ
∗(x)φ(xe−λ

∗(x)).
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Moreover, the maximizing control λ∗ in the upper hedging price formula is given
by

λ∗(t) = II{t=T}λ
∗(S(T )).

The next theorem dissolves the dilemma, that on the one hand for existence of
the maximizing control we need upper semicontinuity, and on the other hand, to
get the upper hedging price right, it would be nice to have lower semicontinuity
of the payoff. Certainly, we are in good shape if the payoff is continuous, but
we can say more:

Theorem 3.8 Let the lower semicontinuous version of a given payoff φ be

φ∗(x)
∆= inf
xn→x

lim inf
n→∞

φ(xn).

If φ̂ = φ̂∗, then even starting with the not necessarily lower semicontinuous φ
face-lifting produces the correct upper hedging price.
If, additionally, φ is upper semicontinuous, then the control problem admits a
maximizer.

Its relevance is of practical nature: The two digital put options

(1) φ(x) = II{x<B} (this is lower semicontinuous.)

(2) φ(x) = II{x≤B} (this is upper semicontinuous.)

should have the same φ̂, and in fact they do! The first one is the lower semi-
continuous version of the second one. However, only the upper semicontinuous
version admits a maximizing control.
We finally conject the existence of a maximizing control. To approach this
problem we have found out that it would be most promising to clarify the one-
to-one correspondence between the maximizing control and the cheapest hedge,
because the latter has been proved to exist: It is essentially a stochastic in-
tegral representation result. We outline this one-to-one correspondence in the
path-independent case to underline our conjecture.

4 The Theoretical Results in Detail

4.1 The Setup

We work on the probability space (Ω,F , IP ), where Ω = C[0, T ] is the space
of continuous functions on the interval [0, T ] and IP is the Wiener measure. A
filtration (Ft)0≤t≤T can be created by setting F0

t
∆= σ{ω : 0 ≤ s ≤ t}, which is

the smallest σ-field which makes all projections measurable. F0
t coincides with

the Borel σ-field generated by the sup-norm topology (Parthasarathy Thm 2.1).
We let Ft be the augmentation of F0

t and F ∆= FT . We define the following
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spaces of controls

Λrc
+

∆= {λ : [0, T ] → [0,∞)|λ(0) = 0, λ is nondecreasing (3)
and right-continuous}

Λc
+

∆= {λ : [0, T ] → [0,∞)|λ(0) = 0, λ nondecreasing, continuous} (4)

Λac
+

∆= {λ ∈ Λc
+|λ is absolutely continuous } (5)

Λacb
+

∆= {λ ∈ Λac
+ |λ′ is bounded} (6)

The subscript + stands for ”nondecreasing”. This notation is chosen, because
we can consider the space Λ+ as a space of finite measures on the interval
[0, T ] corresponding to shortselling constraints. Other spaces, say Λ−, whose
elements can be viewed as the negatives of measures, correspond to borrowing
constraints, and a general spaces Λ would work for convex constraints. In this
thesis, however, we restrict our attention to shortselling constraints.
These spaces are obviously related in the following way:

Λrc
+ ⊃ Λc

+ ⊃ Λac
+ ⊃ Λacb

+ (7)

Ω ⊃ Λc
+ ⊃ Λac

+ ⊃ Λacb
+ (8)

Similarly we define the following spaces of control processes:

Lrc
+

∆= {λ : Ω× [0, T ] → [0,∞]| λ is adapted, (9)
λ(ω, T ) <∞ and λ(ω, ·) ∈ Λrc

+ for IP -a.e. ω}

Lrcb
+

∆= {λ ∈ Lrc
+ |∃C > 0 such that λ(ω, T ) ≤ C for IP -a.e. ω} (10)

Lc
+

∆= {λ ∈ Lrc
+ |λ(ω, ·) ∈ Λc

+ for IP -a.e. ω} (11)

Lac
+

∆= {λ ∈ Lc
+|λ(ω, ·) ∈ Λac

+ for IP -a.e. ω} (12)

Lacb
+

∆= {λ ∈ Lac
+ |∃C > 0 : λ′(ω, t) ∈ [0, C]∀t for IP -a.e. ω} (13)

These spaces are obviously related in the following way:

Lrc
+ ⊃ Lc

+ ⊃ Lac
+ ⊃ Lacb

+ (14)

The adaptivity of a control process λ is an important condition, because we
certainly don’t want the control to know any future stock price. This adaptivity
can be characterized in one of the following three equivalent ways:

(1) ω1(s) = ω2(s) ∀s ≤ t⇒ λ(ω1)(t) = λ(ω2)(t).

(2) For each t ∈ [0, T ], λ(ω)(t) is a function of {ω(s) : 0 ≤ s ≤ t}.

(3) B ∈ Gt ⇒ λ−1(B) ∈ Ft, where Gt is the σ-algebra generated by all paths
λ ∈ Λ+ upto time t.

Notice that λ = 0 is certainly in L+. We equip Λrc
+ with the topology of weak

convergence, which means that a sequence of functions {λn} is said to converge
to a function λ, if limn λn(t) = λ(t) for each continuity point t of λ and for
t ∈ {0, T}. We refer to the appendix for a list of properties of weak convergence.
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4.2 Contingent Claims

On the event space we are given a payoff

F : C[0, T ] → [0,∞) (15)

We only assume FT -measurability and nonnegativity of F throughout. We call
F upper semicontinuous if

lim sup
n→∞

F (ωn) ≤ F (ω), whenever ωn → ω uniformly (16)

and similarly lower semicontinuous if

lim inf
n→∞

F (ωn) ≥ F (ω), whenever ωn → ω uniformly. (17)

We assume a geometric Brownian motion as a model for the underlying instru-
ment, called the“stock”:

S(t, ω) ∆= S0e
σω(t)+µt ;µ ∆= r − 1

2
σ2 (18)

r is the risk-free rate, σ > 0 the volatility of the stock. F will then be of the
form

F (ω) = g(S(·, ω)) (19)

Upper or lower semicontinuity is not a natural property of contingent claims.
It will turn out that we can only expect maximizing controls to exist if the
contingent claim F is upper semicontinuous. On the other hand, most of our
theory will only work for lower semicontinuous F . From a practical point of view
this usually does not matter: For instance, an up-and-out call option normally
knocks out when the barrier is reached. The upper semicontinuous version is
the corresponding option that knocks out when the barrier is crossed. In a
continuous model these subtle differences won’t effect valuation and hedging.
Note that we started with a stock, whose mean rate of return is equal to the
risk-free rate r. This is actually only true in the risk-neutral measure world. But
in order to make this thesis easier to read, we have decided to place ourselves in
this world upfront. We certainly could have started with a different mean rate
of return, say b. But after changing the measure we would be back at b = r.
This procedure has been discussed so many times, and this thesis has different
priority. We refer the reader to the literature, e.g. [KARATZAS and SHREVE:
Methods of Mathematical Finance]. In order to invoke convergence theorems
we may sometimes want to assume the exponential growth condition:

0 ≤ F (ω) ≤ C1 + C2e
γmax0≤t≤T ω(t) (20)

for some nonnegative constants C1, C2 and γ. We will explicitely state, when
it will be used. We may also assume that F is greater than zero on a set of
positive probability. These assumptions are valid for a large class of options
including vanilla puts, digital puts, Asian puts, lookback puts, barrier options,
power options.
As we have seen in the introductory example of the up-and-out call option, the
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maximizing controls may have jumps. Therefore we want to define a correspond-
ing payoff on paths that have jumps. To do that we define the two functions
F ∗, F∗ : C[0, T ]× Λrc

+ → [0,∞):

F ∗(ω, λ) ∆= sup
{

lim sup
n→∞

F (ω − 1
σ
λn)
∣∣∣∣ λn → λ weakly, λn ∈ Λc

+

}
(21)

F∗(ω, λ) ∆= inf
{

lim inf
n→∞

F (ω − 1
σ
λn)
∣∣∣∣ λn → λ weakly, λn ∈ Λc

+

}
(22)

4.3 Properties of the upper- and lower semicontinuous
Versions of Contingent Claims

Theorem 4.1 (F ∗/F∗-Extension)

(1) F ∗ is upper semicontinuous.

(2) F∗ is lower semicontinuous.

(3) F ∗(ω, λ) = F (ω − 1
σλ) for λ ∈ Λc

+ and for upper semicontinuous F .

(4) F∗(ω, λ) = F (ω − 1
σλ) for λ ∈ Λc

+ and for lower semicontinuous F .

(5) F ∗ ≥ F∗.

Proof. We only do (1) and (3). (2) and (4) is completely analogous to (1) and
(3) respectively and (5) is obvious. (1) is true in a more general scenario: Let
(C, d) be a metric space, (C0, d0) a dense metric subspace with respect to the
d-metric, not with respect to the d0-metric. Let F : (C0, d0) → IR be upper
semicontinuous, i.e. lim supF (qn) ≤ F (q), whenever d0(qn, q) → 0. Define

F ∗ : (C, d) → [0,∞)

F ∗(x) ∆= sup
{

lim sup
n→∞

F (qn)
∣∣∣∣ qn d→ x, qn ∈ C0

}
One can imagine the scenario C = IR, C0 = IQ and d = d0 can be the Euclidian
distance. Our case is

C = C[0, T ]× Λrc
+

C0 = C[0, T ]× Λc
+

d = sup×weak
d0 = sup× sup

We will now show that F ∗ is upper semicontinuous (even if F is not): Let x ∈ C
be given, let {xn}n be a sequence in C for which xn

d→ x. We have to show that
lim supF ∗(xn) ≤ F ∗(x). The idea of the proof is: For given ε > 0 we construct
a sequence {pn}n in C0 such that pn

d→ x and

| lim supF ∗(xn)− lim supF (pn)| < ε.

If then lim supF ∗(xn) > F ∗(x), then let ε ∆= 1
2 [F ∗(x)−lim supF ∗(xn)] > 0, con-

struct the sequence {pn}n in C0 for this ε and observe that then lim supF ∗(pn) >
F ∗(x) as well, which contradicts the definition of F ∗ being a supremum. Con-
sequently, we must have lim supF ∗(xn) ≤ F ∗(x).
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A. Choose a subsequence {x′n}n of {xn}n such that

limF ∗(x′n) = lim supF ∗(xn).

B. For each n, choose a sequence {qk,n}k in C0 such that qk,n
d→ x′n as k →∞

and
0 ≤ F ∗(x′n)− lim sup

k→∞
F (qk,n) <

1
n
.

C. For each sequence {qk,n}k choose a subsequence {q′k,n}k such that

lim
k→∞

F (q′k,n) = lim sup
k→∞

F (qk,n).

D. For each n, set pn
∆= q′kn,n

, where kn is chosen to guarantee

d(q′kn,n, x
′
n) <

1
n

and

|F (q′kn,n)− F ∗(x′n)| <
2
n
.

Now, on the one hand, this will imply that

d(pn, x) ≤ d(pn, x′n) + d(x′n, x) <
1
n

+ d(x′n, x) → 0 as n→∞.

On the other hand,

| lim sup
m→∞

F ∗(xm)− lim sup
m→∞

F (pm)| ≤

| lim
m→∞

F ∗(x′m)− F ∗(x′n)|+ |F ∗(x′n)− F (q′kn,n)|+ |F (q′kn,n)− lim
m→∞

F (q′km,m)|.

This is less than any given ε > 0 for a sufficiently large n. This completes
the proof of (1). To prove (3) we assume further that d(qn, q) → 0 implies
d0(qn, q) → 0 for qn, q ∈ C0. This is true in our case due to theorem 6.9. Now,
because F is upper semicontinuous, F (q) ≥ lim supF (qn), whenever qn

d→ q.
Therefore F (q) ≥ F ∗(q). To get the other inequality, notice that q can be ap-
proximated by the constant sequence consisting only of q’s, and then by the
definition of the supremum, F ∗(q) ≥ lim supF (q) = limF (q) = F (q). This
completes the proof of the theorem.

The exponential groth property for F ∗/F∗
Since

max
t∈[0,T ]

(ω(t)− 1
σ
λ(t)) ≤ max

t∈[0,T ]
ω(t) ∀λ ∈ Λrc

+

we conclude that

F ∗(ω, λ) ≤ C1 + C2e
γmaxt∈[0,T ] ω(t) ∀λ ∈ Λrc

+ .

Using the known density for the maximum of a Brownian Motion in [0, T ]
[KARATZAS and SHREVE, Brownian Motion and Stochastic Calculus, Sec-
tion 2.8.], we can compute its moment generating function∫

Ω

eγmaxt∈[0,T ] ω(t) dIP (ω) = 2e
1
2γ

2TN (γ
√
T ),
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which shows that both F ∗ and F∗ are integrable.

We will call F ∗ the upper semicontinuous version of F and F∗ the lower semicon-
tinuous version of F . The question arises, whether we can identify F ∗ and F∗.
It turns out that in several interesting cases the formula F ∗(ω, λ) = F (ω− 1

σλ)
holds even for λ ∈ Λrc

+ , although F (ω− 1
σλ) is actually only defined for λ ∈ Λc

+.
We collect details in the following:

Theorem 4.2 (F ∗/F∗-Identification)

(1) Let F (ω) = g(S(T, ω)) for some function g : [0,∞) → [0,∞).
If g is upper semicontinuous, then

F ∗(ω, λ) = g(S(T, ω)e−λ(T )).

If g is lower semicontinuous, then

F∗(ω, λ) = g(S(T, ω)e−λ(T )).

In particular, if g is continuous ,then

F ∗(ω, λ) = F∗(ω, λ) = g(S(T, ω)e−λ(T )).

(2) Let F (ω) = g(S(T, ω),maxt∈[0,T ] S(t, ω)) for some function

g : [0,∞)× [0,∞) → [0,∞)

.
If g is upper semicontinuous, then

F ∗(ω, λ) ≤ g

(
S(T, ω)e−λ(T ), sup

t∈[0,T ]

(S(t, ω)e−λ(t)

)
.

If g is lower semicontinuous, then

F∗(ω, λ) ≥ g

(
S(T, ω)e−λ(T ), sup

t∈[0,T ]

(S(t, ω)e−λ(t)

)
.

In particular, if g is continuous ,then

F ∗(ω, λ) = F∗(ω, λ) = g

(
S(T, ω)e−λ(T ), sup

t∈[0,T ]

(S(t, ω)e−λ(t)

)
.

Analogous statements hold for functions g : [0,∞)4 → [0,∞) of the form

F (ω) = g

(
S(T, ω), max

t∈[0,T ]
S(t, ω), min

t∈[0,T ]
S(t, ω),

∫ T

0

S(t, ω) dt

)

(3) Let F (ω) = g(S(t1, ω), . . . , S(tN , ω)) for finitely many checkpoints 0 ≤
t1 < t2 < · · · < tN ≤ T , N an integer and g : [0,∞)N → [0,∞). If g is
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upper semicontinuous and nonincreasing in each variable (except possibly
in S(T )), then

F ∗(ω, λ) = g
(
S(t1, ω)e−λ(t1), . . . , S(tN , ω)e−λ(tN )

)
.

If g is lower semicontinuous in each variable, then

F∗(ω, λ) ≤ g
(
S(t1, ω)e−λ(t1), . . . , S(tN , ω)e−λ(tN )

)
.

Denoting

•
M(T ) ∆= max

t∈[0,T ]
S(t)

•
m(T ) ∆= min

t∈[0,T ]
S(t)

•
A(T ) ∆=

1
T

∫ T

0

S(t) dt

this theorem covers at least

(1) all path-independent options g(S(T ))

(2) an up and out call option: g(S(T ),M(T )) = (S(T )−K)+II{M(T )≤B}

(3) a book of barrier options,
e.g. g(S(T ),M(T )) =

∑
j cj(S(T )−Kj)+II{M(T )≤Bj}

(4) a lookback put option: g(S(T ),M(T )) = M(T )− S(T )

(5) an Asian put option g(S(T ), A(T )) = (A(T )− S(T ))+

(6) a discrete Asian put : g(S(t1), . . . , S(tN )) = (K − average{S(ti)}Ni=1)
+

(7) an up and out call option, where it is only checked finitely many times,
whether the option has knocked out or not: g(S(t1), . . . , S(tN )) = (S(tN )−
K)+II{S(t1)≤B} · · · · · II{S(tN )≤B} for tN = T (which is the realistic version
of an up and out call.)

(8) a quotient option like: g(St, ST ) =
KII{ST≤B}

Sβ
t

for some nonnegative con-

stants K, B and β and t ∈ [0, T ].

Proof.

(1) We have to show two inequalities:

F ∗ ≤ g:
If λn ∈ Λc

+ converges weakly to λ ∈ Λrc
+ , then we always have con-

vergence at the final time T . Therefore

S(T, ω)e−λn(T ) −→ S(T, ω)e−λ(T ).
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The upper semicontinuity of g implies for all λn
w→ λ

lim sup
n→∞

g
(
S(T, ω)e−λn(T )

)
≤ g

(
S(T, ω)e−λ(T )

)
.

Now taking the supremum over all such {λn}n on the left hand side
of the inequality yields

F ∗(ω, λ) ≤ g
(
S(T, ω)e−λ(T )

)
.

F ∗ ≥ g:
On the other hand, F ∗, being the supremum, certainly satisfies

F ∗(ω, λ) ≥ lim sup
n→∞

g
(
S(T, ω)e−λn(T )

)
for all sequences {λn}n in Λc

+ converging weakly to λ. According to
theorem 6.10, there exists a ”good” sequence {λn}n in Λc

+ converging
weakly to λ, which additionally satisfies λn(T ) = λ(T ) for all n.
Taking this sequence in the above inequality, we can skip the limes
superior and arrive at the result

F ∗(ω, λ) ≥ g
(
S(T, ω)e−λ(T )

)
.

The proof for F∗ is analogous.

(2) We have to show the inequality: F ∗ ≤ g:

If λn ∈ Λc
+ converges weakly to λ ∈ Λrc

+ , then we always have conver-
gence at the final time T . Therefore

S0 exp{σω(T ) + µT − λn(T )} −→ S0 exp{σω(T ) + µT − λ(T )}.

By theorem 6.11, additionally

max
t∈[0,T ]

[S0 exp{σω(t) + µt− λn(t)}] −→ sup
t∈[0,T ]

[S0 exp{σω(t) + µt− λ(t)}].

The upper semicontinuity of g implies for all λn
w→ λ

lim sup
n→∞

g

(
S0e

σω(T )+µT−λn(T ), max
t∈[0,T ]

[S0e
σω(t)+µt−λn(t)]

)

≤ g

(
S0e

σω(T )+µT−λ(T ), sup
t∈[0,T ]

[S0e
σω(t)+µt−λ(t)]

)
.

Now taking the supremum over all such {λn}n on the left hand side of the
inequality yields

F ∗(ω, λ) ≤ g

(
S0e

σω(T )+µT−λ(T ), sup
t∈[0,T ]

[S0e
σω(t)+µt−λ(t)]

)
.

For a lower semicontinuous F we can do an analogous argument to com-
plete the proof.
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(3) We are trying to imitate the proof of (1). However, the F ∗ ≤ g-part does not
work anymore, because we do not know, whether for tk 6∈ {0, T}, λn(tk)
will converge to λ(tk). All we know is that all the accumulation points
of the sequence {λn(tk)}n are contained in the interval [λ(tk−), λ(tk)]
(theorem 6.3). To get the argument to work, we have to impose the
stated condition that g is nonincreasing in each variable. Fortunately this
is the case we are interested in, because if g was increasing in, say St,
then the delta of this option would be positive at t, and so naturally one
would not want to impose a shortselling constraint there. The proof of
the first inequality is still based on the upper semicontinuity of g, whereas
the proof for the other inequality is essentially the same as in (1). Here is
how it works:

F ∗ ≤ g: We want to show

F ∗(ω, λ) ≤ g
(
S0e

σω(t1)+µt1−λ(t1), . . . , S0e
σω(tN )+µtN−λ(tN )

)
.

If this was not true, then there must be a sequence {λn}n in Λc
+

converging weakly to λ, such that

lim sup
n→∞

g
(
S0e

σω(t1)+µt1−λn(t1), . . . , S0e
σω(tN )+µtN−λn(tN )

)
> g

(
S0e

σω(t1)+µt1−λ(t1), . . . , S0e
σω(tN )+µtN−λ(tN )

)
.

There exists a subsequence {λnj}j of {λn}n such that

lim sup
n→∞

g
(
S0e

σω(t1)+µt1−λn(t1), . . . , S0e
σω(tN )+µtN−λn(tN )

)
= lim
j→∞

g
(
S0e

σω(t1)+µt1−λnj
(t1), . . . , S0e

σω(tN )+µtN−λnj
(tN )

)
and, of course any further subsequence must have the same limit. We
choose a further subsequence {λnjl

}l such that for all k = 1, 2, . . . , N

lim
l→∞

λnjl
(tk) = ηk ∈ [λ(tk−), λ(tk)].

This can be done by successively choosing further subsequences. Since
ηk ≤ λ(tk) for all k, we can deduce

S0e
σω(tk)+µtN−ηk ≥ S0e

σω(tk)+µtN−λ(tk).

Finally we can put all the pieces together:

lim
l→∞

g
(
S0e

σω(t1)+µt1−λnjl
(t1), . . . , S0e

σω(tN )+µtN−λnjl
(tN )

)
= lim sup

n→∞
g
(
S0e

σω(t1)+µt1−λn(t1), . . . , S0e
σω(tN )+µtN−λn(tN )

)
> g

(
S0e

σω(t1)+µt1−λ(t1), . . . , S0e
σω(tN )+µtN−λ(tN )

)
≥ g

(
S0e

σω(t1)+µt1−η1 , . . . , S0e
σω(tN )+µtN−ηN

)
,

where the last step used the assumption that g is nonincreasing in
each variable. This conclusion, however, violates the upper semicon-
tinuity of g.
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F ∗ ≥ g: To show the other inequality, we only need the existence of
a ”good” sequence which keeps all the tk fixed. This was done in
theorem 6.10.

The existence of this ”good” sequence also implies

F∗(ω, λ) ≤ g
(
S0e

σω(t1)+µt1−λ(t1), . . . , S0e
σω(tN )+µtN−λ(tN )

)
.

The proof of the theorem is complete.
Remark: We do not expect to find a ”good” sequence which is fixed at a
countable number of times. If for instance it was fixed at all the rationals
in [0, T ], then by continuity all the sequence members would have to be
identical and could thus only converge to a given λ if this was already
continuous.

4.4 Value Functions

To continue with the general theory we define value functions

u∗(S0;λ) ∆=
∫

Ω

e−rT−αλ(T,ω)F ∗(ω, λ(ω)) dIP (ω) (23)

u∗(S0;λ) ∆=
∫

Ω

e−rT−αλ(T,ω)F∗(ω, λ(ω)) dIP (ω) (24)

for any λ ∈ Lrc
+ and

u(S0;λ) ∆=
∫

Ω

e−rT−αλ(T,ω)F (ω − 1
σ
λ(ω)) dIP (ω) (25)

for any λ ∈ Lc
+. We notice that 0 ∈ Lrc

+ and that F ∗(ω, 0) = F∗(ω, 0) = F (ω)
and so

u∗(S0, 0) = u∗(S0, 0) = u(S0, 0) = IE[e−rTF ] (26)

is the Time Zero Value of the Unconstrained Contingent Claim. We want to
clarify in this thesis what is the Time Zero Value of the Constrained Contingent
Claim F , also called the upper hedging price of F subject to the shortselling
constraint. To do this we define the following value functions:

u∗(S0)
∆= sup

λ∈Lrc
+

u∗(S0;λ) (27)

u∗(S0)
∆= sup

λ∈Lrc
+

u∗(S0;λ) (28)

u(S0; c)
∆= sup

λ∈Lc
+

u(S0;λ) (29)

u(S0; ac) ∆= sup
λ∈Lac

+

u(S0;λ) (30)

u(S0; acb) ∆= sup
λ∈Lacb

+

u(S0;λ) (31)

(32)

Let us first state the obvious relations between all the above value functions:
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Theorem 4.3 (Obvious Relations)

u(S0; acb) ≤ u(S0; ac) ≤ u(S0; c)
u∗(S0) ≤ u∗(S0)
u(S0; c) ≤ u∗(S0)

u(S0; c) ≤ u∗(S0) if F is lower semicontinuous.

4.5 A Visible Version of the Main Hedging Result

Theorem 4.4 If the contingent claim F satisfies the exponential growth con-
dition, then u(S0; acb) is the upper hedging price, i.e. if we start with initial
wealth u(S0; acb), we can construct a hedge which allows us to payoff F and re-
spects the constraint that the leverage is bounded below by −α during the lifetime
of the option (α ≥ 0). u(S0; acb) is the minimal amount which permits this.

Proof. This main hedging result has been proved in [KARATZAS and SHREVE:
Methods of Mathematical Finance 5.6.2] in the following form: The upper hedg-
ing price is given by

sup
λ∈Lacb

+

IEλ

[
e−rT−αλ(T )g

(
S0e

σWλ+µ−λ)] . (33)

The Brownian motion Wλ has been defined to be

Wλ(t)
∆= W (t) +

1
σ
λ(t), (34)

and the expectation is to be taken under the probability measure IPλ defined as

IPλ[A] ∆=
∫
A

Zλ(T ) dIP ∀ A ∈ FT , (35)

where the density process Zλ(t) is

Zλ(t)
∆= exp

{
− 1
σ

∫ t

0

λ′(s) dW (s)− 1
2σ2

∫ t

0

(λ′(s))2 ds
}
. (36)

We have used the shorthand notation

g
(
S0e

σWλ+µ−λ) ∆= g

({
S0e

σWλ(t)+(r− 1
2σ

2)t−λ(t)
}
t∈[0,T ]

)
. (37)

This illuminates the importance of the space Lacb
+ , because in order to be even

able to state the main hedging result, we have to ensure that the probability
measure IPλ is defined. For that, it suffices that the process λ′(t) is uniformly
bounded, because it will turn Zλ(t) into a martingale. The other problem is that
this formulation of the main hedging result really stretches our imagination: We
are maximizing over changes of measure, a rather non-transparent procedure.
Our new new version of the main hedging result basically says that we do not
need the subscript λ at IE and W , i.e. we claim

sup
λ∈Lacb

+

IEλ

[
e−rT−αλ(T )g

(
S0e

σWλ+µ−λ)]
= sup

λ∈Lacb
+

IE
[
e−rT−αλ(T )g

(
S0e

σW+µ−λ)] . (38)
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To show this we will now prove that even before taking the supremum

IEλ

[
e−αλ(T )g

(
S0e

σWλ+µ−λ)] = IE
[
e−αλ(T )g

(
S0e

σW+µ−λ)] . (39)

The key observation for the proof is that it does not matter on which proba-
bility space (Ω,F , IPλ, {Ft}t∈[0,T ]) Wλ is a Brownian motion. We can take any
Brownian motion on any probability space (Ω̃, F̃ , ĨP , {F̃t}t∈[0,T ]), and to make
this concrete we define

Ω̃ ∆= Ω (40)

F̃t
∆= Ft (41)

λ̃(ω, t) ∆= λ(ω, t) (42)

W̃ (t) ∆= W (t)− 1
σ

∫ t

0

λ′(s) ds = W (t)− 1
σ
λ(t) (43)

ĨP [A] ∆=
∫
A

exp

{
1
σ

∫ T

0

λ′(s) dW (s)− 1
2σ2

∫ T

0

(λ′(s))2 ds

}
dIP (44)

for all A ∈ FT . By Girsanov’s change of measure theorem, W̃ is a Brownian
motion on the probability space (Ω̃, F̃ , ĨP , {F̃t}t∈[0,T ]), adapted to the filtration
{F̃t}t∈[0,T ]. Moreover, λ̃ ∈ Lacb

+ . We take this Brownian motion and this
probability space to start with and follow the definitions of [KARATZAS and
SHREVE]:

W̃λ̃(t)
∆= W̃ (t) +

1
σ
λ̃(t)

= W̃ (t) +
1
σ
λ(t)

= W (t) (45)

The probability measure ĨP λ̃ happens to agree with IP , because for all A ∈ FT
we have

ĨP λ̃[A] =
∫
A

exp

{
− 1
σ

∫ T

0

λ̃′(s) dW̃ (s)− 1
2σ2

∫ T

0

(λ̃′(s))2 ds

}
dĨP

=
∫
A

exp

{
− 1
σ

∫ T

0

λ̃′(s) dW̃ (s)− 1
2σ2

∫ T

0

(λ̃′(s))2 ds

+
1
σ

∫ T

0

λ̃′(s) dW (s)− 1
2σ2

∫ T

0

(λ̃′(s))2 ds

}
dIP

=
∫
A

exp

{
− 1
σ

∫ T

0

λ′(s) dW (s) +
1
σ2

∫ T

0

(λ′(s))2 ds

− 1
2σ2

∫ T

0

(λ′(s))2 ds

+
1
σ

∫ T

0

λ′(s) dW (s)− 1
2σ2

∫ T

0

(λ′(s))2 ds

}
dIP

= IP [A].

34



This proves equation 39 and the proof of the theorem is complete. We can
now view the constraint valuation problem as a maximization over processes
with absolutely continuous nondecreasing paths that have bounded derivatives.
The control problem has been visualized! The fact that all our examples show
maximizing control processes that have singular nondecreasing paths motivates
us to go on.

4.6 Extension to Continuous Controls

We will now examine under which conditions the inequalities of the obvious
relations can be reversed and whether they can be strict. It has been indi-
cated in [KARATZAS and SHREVE: Methods of Mathematical Finance], that
u(S0; acb) = u(S0; ac). Here is our new first basic result in this direction:

Theorem 4.5 If F is lower semicontinuous, then

u(S0; acb) ≥ u(S0; c).

If F is not lower semicontinuous, then it can happen, that

u(S0; acb) < u(S0; c).

Proof. We must show that for any λ ∈ Lc
+

sup
λ∈Lacb

+

IE

[
e−αλ(T )F (W − 1

σ
λ)
]
≥ IE

[
e−αλ(T )F (W − 1

σ
λ)
]
. (46)

Let λ ∈ Lc
+ be given. Define a sequence {λn}n of truncated left-mollifications

of λ by

λn(t, ω) ∆=
∫ 0

−1

min
[
n, λ(t+

u

n
, ω)
]
ϕ(u) du, (47)

where the weight function ϕ : IR→ [0,∞) is given by

ϕ(t) ∆= Cϕ exp
{

−1
(2t+ 1)2 − 1

}
II[−1,0](t). (48)

Cϕ is chosen such that
∫
ϕ(t) dt = 1. ϕ is then a nonnegative probability density

function in C∞(IR) with support [−1, 0]. We shall see below that λn ∈ Lacb
+

and that λn converges to λ uniformly for all ω. Using this we can first say that
for all n

sup
λ∈Lacb

+

IE

[
e−αλ(T )F (W − 1

σ
λ)
]
λn∈Lacb

+

≥ IE

[
e−αλn(T )F (W − 1

σ
λn)
]

(49)

and therefore

sup
λ∈Lacb

+

IE

[
e−αλ(T )F (W − 1

σ
λ)
]

≥ lim inf
n→∞

IE

[
e−αλn(T )F (W − 1

σ
λn)
]

Fatou
≥ IE

[
lim inf
n→∞

e−αλn(T )F (W − 1
σ
λn)
]

= IE

[
e−αλ(T ) lim inf

n→∞
F (W − 1

σ
λn)
]

F lsc
≥ IE

[
e−αλ(T )F (W − 1

σ
λ)
]
.
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To complete the proof, we must verify the following checklist for λn:

A. λn(0) = 0.

B. λn is adapted.

C. λn ≤ λ.

D. λn <∞ a.s.

E. λn is nondecreasing in t.

F. λn is absolutely continuous.

G. λ′n is bouded by n2ϕ(− 1
2 ) uniformly in (t, ω).

H. λn is nondecreasing in n for each (t, ω).

I. limλn(t) = λ(t) for all t and for a.e. ω.

J. λn converges to λ uniformly in t for a.e. ω.

Let’s go through this checklist again, now including the proofs:

A. λn(0) = 0 is certainly true, if we use the natural extension of λ: λ(t) = 0
for t < 0.

B. λn is adapted, because λ is adapted and λn(t) requires only knowledge of
λ up to time t.

C. Since t+ u
n ≤ t and λ is nondecreasing, we get for all ω

λn(t) =
∫ 0

−1

min
[
n, λ(t+

u

n
)
]
ϕ(u) du ≤

∫ 0

−1

λ(t+
u

n
)ϕ(u) du

≤
∫ 0

−1

λ(t)ϕ(u) du = λ(t).

D. λn <∞ follows from C: λn ≤ λ <∞ a.s.

E. λn is nondecreasing in t: Let 0 ≤ t ≤ s ≤ T . Since λ is assumed to be
nondecreasing, we obtain for all u ∈ [−1, 0]

λ(t+
u

n
) ≤ λ(s+

u

n
)

and hence for all u ∈ [−1, 0]

min
[
n, λ(t+

u

n
)
]
≤ min

[
n, λ(s+

u

n
)
]
.

This implies for all ω∫ 0

−1

min
[
n, λ(t+

u

n
)
]
ϕ(u) du ≤

∫ 0

−1

min
[
n, λ(s+

u

n
)
]
ϕ(u) du
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F. λn is absolutely continuous. After the change of variables t+ u
n = y we get

λn(t, ω) =
∫ 0

−1

min
[
n, λ(t+

u

n
, ω)
]
ϕ(u) du

= n

∫ t

t− 1
n

min [n, λ(y, ω)]ϕ(n(y − t)) dy

= n

∫ T

−∞
min [n, λ(y, ω)]ϕ(n(y − t)) dy,

which shows that λn(t, ω) ∈ C∞[0, T ]. In particular, it is absolutely con-
tinuous.

G. λ′n ≥ 0 follows from E. and F. To get the upper bound, first observe that
for any nondecreasing λ̃∫ t

t− 1
n

λ̃(y)ϕ′(n(y − t)) dy

=
∫ t− 1

2n

t− 1
n

λ̃(y)

≥0︷ ︸︸ ︷
ϕ′(n(y − t)) dy +

∫ t

t− 1
2n

λ̃(y)

≤0︷ ︸︸ ︷
ϕ′(n(y − t)) dy

≥
∫ t− 1

2n

t− 1
n

λ̃(t− 1
n

)ϕ′(n(y − t)) dy +
∫ t

t− 1
2n

λ̃(t)ϕ′(n(y − t)) dy

=
1
n
λ̃(t− 1

n
)

ϕ(−1
2
)−

=0︷ ︸︸ ︷
ϕ(−1)

+
1
n
λ̃(t)

 =0︷︸︸︷
ϕ(0)−ϕ(−1

2
)


= − 1

n
ϕ(−1

2
)
[
λ̃(t)− λ̃(t− 1

n
)
]

Using this inequality for the nondecreasing λ̃(t) ∆= min[n, λ(t)] we conclude
that for all (t, ω)

λ′n(t, ω) = −n2

∫ t

t− 1
n

min [n, λ(y, ω)]ϕ′(n(y − t)) dy

≤ nϕ(−1
2
)
[
min[n, λ(t, ω)]−min[n, λ(t− 1

n
, ω)]

]
≤ n2ϕ(−1

2
).

H. λn is nondecreasing in n for each (t, ω): Since 1
1+n <

1
n , we know that

t+
u

n+ 1
> t+

u

n
∀u ∈ [−1, 0].

Since furthermore λ is assumed to be nondecreasing, this implies

λ

(
t+

u

n+ 1

)
≥ λ

(
t+

u

n

)
∀ u ∈ [−1, 0]
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and thus

min
[
n, λ

(
t+

u

n+ 1

)]
≥ min

[
n, λ

(
t+

u

n

)]
∀ u ∈ [−1, 0]

It follows that

λn+1(t) =
∫ 0

−1

min
[
n+ 1, λ(t+

u

n+ 1
)
]
ϕ(u) du

≥
∫ 0

−1

min
[
n, λ(t+

u

n+ 1
)
]
ϕ(u) du

≥
∫ 0

−1

min
[
n, λ(t+

u

n
)
]
ϕ(u) du

= λn(t).

I. limλn(t) = λ(t) for all t and for a.e. ω: Since λ(T ) < ∞ a.s., we see that
a.s.

lim
n→∞

min
[
n, λ(t+

u

n
)
]

= lim
n→∞

λ(t+
u

n
).

Using this and the Monotone Convergence Theorem, we obtain for a.e. ω

lim
n→∞

∫ 0

−1

min
[
n+ 1, λ(t+

u

n+ 1
)
]
ϕ(u) du

=
∫ 0

−1

lim
n→∞

min
[
n, λ(t+

u

n+ 1
)
]
ϕ(u) du

=
∫ 0

−1

lim
n→∞

λ(t+
u

n
)ϕ(u) du

=
∫ 0

−1

λ(t)ϕ(u) du

= λ(t).

J. λn converges to λ uniformly in t for a.e. ω, because pointwise convergence on
a compact interval to a continuous function is uniform if the convergence
is monotone. (Dini’s theorem)

The upper semicontinuous Up-and-Out Call

F = (S(T )−K)+II{S(t)≤B ∀t∈[0,T ]}

serves as an example for strict inequality: If the staring point S(0) is at the
barrier, then

0 = u(B; acb) < u(B; c) = v(0, B;α).

A singularly continuous control can create reflection at the barrier and save the
option from knocking out. No absolutely continuous control, however, can save
the option from knocking out instantly. We also see here, that, had we taken
the lower semicontinuous Up-and-Out Call, this difference would not appear.
This completes the proof of the theorem.
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4.7 Extension to Right-Continuous Controls

So far we have learned that we can maximize over (possibly singularly) con-
tinuous control processes to find the upper hedging price. All the examples
of path-independent options, however, show maximizing controls with a jump
at the final time T . The example of the Up-and-Out Put teaches us, that we
must admit a combination of singularly continuous processes and a final time
jump. Moreover, the example of the realistic Up-and-Out Call indicates that
jumps can happen basically any time. This motivates the importance of the
next theorem. In principle, the proof will be the same as in the previuos Exten-
sion to Continuous Controls, namely we approximate a given right-continuous
control with jumps by continuous controls. The construction, however, is much
more difficult, because we need to capture the jumps in the approximation with-
out being allowed to lood ahead (adaptivity!). The property that saves us is
the right-continuity of the (augmented) Brownian filtration [KARATZAS and
SHREVE 2.7.7], which allows us to look infinitesimally far ahead and thus ac-
tually to predict a future jump with increasing precision as we get closer. The
details of this construction are rather technical.

Theorem 4.6
u(S0; c) = u∗(S0).

For the proof we need the following

Lemma 4.7 For a given λ ∈ Lrcb
+ there exists a positive constant C and a

random function
ψ : Ω× [0, T ]× [0, T ] −→ [0, C]

such that for every ω ∈ Ω

(a) s 7→ ψ(s, t) is continuous for all t ∈ [0, T ],

(b) t 7→ ψ(s, t) is RCLL and nondecreasing for all s ∈ [0, T ]

and for every s, t ∈ [0, T ] and a.e. ω

ψ(s, t) = IE[λ(t)|F(s)].

Proof of theorem 4.6. Since u(S0; c) ≤ u∗(S0) is obvious, we must show here
that for any λ ∈ Lrc

+

sup
λ∈Lc

+

IE

[
e−αλ(T )F (W − 1

σ
λ)
]
≥ IE

[
e−αλ(T )F∗(W,λ)

]
.

Let λ ∈ Lrc
+ be given. We can do the same argument as in the previous theo-

rem 4.5, if we can create a sequence {λn}n in Lrc
+ satisfying the the following

condition: λn is adapted and there exists a singular exceptional set N ⊂ Ω,
IP [N ] = 0, and for all ω ∈ Ω \N :

A. λn(0) = 0.

B. λn is nondecreasing in t.

C. λn is continuous.
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D. λn converges weakly to λ.

With such a sequence we can first say that for all n

sup
λ∈Lc

+

IE

[
e−αλ(T )F (W − 1

σ
λ)
]
λn∈Lc

+

≥ IE

[
e−αλn(T )F (W − 1

σ
λn)
]

(50)

and therefore

sup
λ∈Lc

+

IE

[
e−αλ(T )F (W − 1

σ
λ)
]

≥ lim inf
n→∞

IE

[
e−αλn(T )F (W − 1

σ
λn)
]

Fatou
≥ IE

[
lim inf
n→∞

e−αλn(T )F (W − 1
σ
λn)
]

= IE

[
e−αλ(T ) lim inf

n→∞
F (W − 1

σ
λn)
]

Def of F∗
≥ IE

[
e−αλ(T )F∗(W,λ)

]

To complete the proof, we create a suitable sequence λn: We assume first that
λ(T ) ≤ C a.s. for some positive constant C ∈ IR. Now we take the random
variable ψ of the lemma and define ω-wise

γn(t)
∆= ψ

(
(t− 1

n
)+, t

)
, (51)

λ̌n(t)
∆=

∫ 1

0

γn(t+
u

n
)ϕ(u) du−

∫ 1

0

γn(
u

n
)ϕ(u) du (52)

λn(t)
∆= max

0≤s≤t
λ̌n(s), (53)

where ϕ is a probability density function in C∞(IR) with support [0, 1]. With
this definition λn is adapted. Now we have to go through the checklist:

A. λn(0) = 0 is trivial.

B. λn has been forced to be nondecreasing in t.

C. λn(t) is continuous in t: We only need to check that

λ̌n(t) =
∫ 1

0

γn(t+
u

n
)ϕ(u) du

= n

∫ ∞

−∞
γn(y)ϕ(n(y − t)) dy

is continuous in t. This follows from the continuity of ϕ and the Bounded
Convergence Theorem.

D. λn converges weakly to λ: First of all,∫ 1

0

γn(
u

n
)ϕ(u) du =

∫ 1

0

ψ(0,
u

n
)ϕ(u) du (54)
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is a constant function converging to zero. Then

lim inf
n→∞

λ̌n(t)
Fatou
≥

∫ 1

0

lim inf
n→∞

γn(t+
u

n
)ϕ(u) du

Def. of γn=
∫ 1

0

lim inf
n→∞

ψ

(
(t+

u− 1
n

)+, t+
u

n

)
ϕ(u) du

t7→ψ(s,t) is ↑
≥

∫ 1

0

lim inf
n→∞

ψ

(
(t+

u− 1
n

)+, t
)
ϕ(u) du

s 7→ψ(s,t) is cont.
=

∫ 1

0

ψ (t, t)ϕ(u) du

= ψ (t, t) (55)

On the other hand, for fixed k ∈ IN and all n ≥ k we get

ψ

(
(t+

u− 1
n

)+, t+
u

n

)
≤ ψ

(
(t+

u− 1
n

)+, t+
u

k

)
,

because the mapping t 7→ ψ(s, t) is nondecreasing. We take the limes
superior on both sides and get

lim sup
n→∞

γn(t+
u

n
) ≤ lim sup

n→∞
ψ

(
(t+

u− 1
n

)+, t+
u

k

)
≤ ψ

(
t, t+

u

k

)
Recalling that ψ is bounded above by C this yields for all k

lim sup
n→∞

λ̌n(t)
Fatou
≤

∫ 1

0

lim sup
n→∞

γn(t+
u

n
)ϕ(u) du

t7→ψ(s,t) is cont.

≤
∫ 1

0

ψ
(
t, t+

u

k

)
ϕ(u) du.

We may now take the limes superior on the right hand side, use the right-
continuity of t 7→ ψ(s, t) and get

lim sup
n→∞

λ̌n(t) ≤ lim sup
k→∞

∫ 1

0

ψ
(
t, t+

u

k

)
ϕ(u) du

Fatou
≤

∫ 1

0

lim sup
k→∞

ψ
(
t, t+

u

k

)
ϕ(u) du

= ψ (t, t) (56)

As a combined result, we have derived

lim
n→∞

λ̌n(t) = ψ(t, t) (57)
a.s.= IE[λ(t)|F(t)]
a.s.= λ(t). (58)

It remains to show that λn(t) converges to λ(t) for all t ∈ [0, T ] a.s. as
well. Since λn(t) ≥ λ̌n(t), we get

lim inf
n→∞

λn(t) ≥ lim inf
n→∞

λ̌n(t) = λ(t) (59)
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for free. What we need to complete D is

lim sup
n→∞

λn(t) ≤ λ(t). (60)

Let us fix t and choose for each n a number sn ∈ [0, t] such that

λ̌n(sn) = λn(t). (61)

We also choose a subsequence {λnk
}k of {λn}n such that

lim sup
n→∞

λn(t) = lim
k→∞

λnk
(t). (62)

Consider the sequence {snk
}k. It is bounded and therefore contains a

subsequence {snkj
}j converging to a number s∗ ∈ [0, t]. Now we can put

the pieces together and conclude

lim sup
n→∞

λn(t) = lim
k→∞

λnk
(t)

= lim
j→∞

λnkj
(t)

= lim
j→∞

λ̌nkj
(snkj

)

≤ λ(s∗)
≤ λ(t)

The second last inequality follows from theorem 6.4 and the previous result
that λ̌n converges pointwise to λ, and the last one from the fact that λ is
nondecreasing.

The verification of the checklist is complete and we have derived the intermediate
result

u(S0; c) = sup
λ∈Lrcb

+

IE
[
e−αλ(T )F∗(W,λ)

]
. (63)

Finally we must examine what happens if λ(T ) ≤ C a.s. does not hold, but
rather λ(T ) <∞ a.s. In this case we take the given λ and look at the truncated
approximation λn

∆= n∧λ. Then we see that λn ∈ Lrcb
+ and λn converges weakly

to λ. Since F∗ is lower semicontinuous, our standard proof will take care of the
rest. The proof of the theorem is complete.

Proof of Lemma 4.7. Let λ ∈ Lrcb
+ be given. Then first of all there ex-

ists a positive constant C such that

λ(T ) ≤ C a.s. (64)

For λ ∈ Λrc
+ and δ > 0 define the right modulus of continuity

mδ(λ) ∆= sup
0≤t≤T−δ

[λ(t+ δ)− λ(t)]. (65)

[BILLINGSLEY, Convergence of Probability Measures] shows that

lim
δ↓0

mδ(λ) = 0 ∀ λ ∈ Λrc
+ . (66)
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Equation 64 implies that the random variable mδ(λ) satisfies

mδ(λ) ≤ C a.s. ∀ δ > 0. (67)

The bounded, nonnegative martingale {IE[mδ(λ)|F(s)]}0≤s≤T has a RCLL mod-
ification which we call Mδ(s), i.e., for each s ∈ [0, T ]

Mδ(s) = IE[mδ(λ)|F(s)] a.s. (68)

and without loss of generality, we take every path of Mδ to be RCLL, nonneg-
ative and bounded above by C. We set

M∗
δ

∆= sup
0≤s≤T

Mδ(s) ≤ C. (69)

and without loss of generality assume

M∗
δ1(ω) ≤M∗

δ2(ω) ≤ C ∀ ω ∈ Ω,∀ δ1, δ2 ∈ (0,∞) ∩ IQ, δ1 < δ2. (70)

(The set where equation 70 fails has probability zero; redefine Mδ(·) ≡ 0 on this
set.) Note from Doob’s maximal martingale inequality that

IE
[
(M∗

δ )2
]
≤ 4IE

[
(mδ(λ))2

] δ↓0−→ 0 (71)

because of equations 66 and 67. We may thus choose a sequence of positive
numbers {δk}k with δk ↓ 0 such that

∞∑
k=1

k2IE
[
(mδk

(λ))2
]
<∞. (72)

Chebyshev’s inequality implies

IP

[
M∗
δk
≥ 1
k

]
≤ k2IE

[
(M∗

δk
)2
]
≤ 4k2IE

[
(mδk

(λ))2
]
, (73)

and the Borel-Cantelli lemma implies IP
[
M∗
δk
≥ 1

k i.o.
]

= 0. On the null set{
M∗
δk
≥ 1

k i.o.
}
, we redefine Mδ(·) ≡ 0 for all δ, such that equation 68 still

holds and now,

∀ ω ∈ Ω ∃K(ω) such that M∗
δk

(ω) <
1
k
∀k ≥ K(ω). (74)

For each t ∈ [0, T ] ∩ IQ, the martingale {IE[λ(t)|F(s)]}0≤s≤T is a martin-
gale with respect to a Brownian filtration, whence it admits a stochastic in-
tegral representation. Therefore it has a continuous modification, which we call
ψ(s, t), 0 ≤ s ≤ T , i.e., for each s ∈ [0, T ]

ψ(s, t) = IE[λ(t)|F(s)] a.s., (75)

and without loss of generality, we take every path of s 7→ ψ(s, t) to be continuous,
nonnegative and bounded above by C. In equations 68 and 75 the right-hand
sides are defined only up to IP -a.s. equivalence, whereas the left-hand sides are
defined for every ω ∈ Ω. More properly stated, a conditional expectation is an
equivalence class of random variables, where the equivalence relation is almost

43



sure equality, and in equations 68 and 75 we are using the Axiom of Choice to
choose representatives from equivalence classes.
We next study the dependence of ψ(s, t) on t: If 0 ≤ t1 < t2 ≤ T and t1, t2 ∈ IQ,
then

ψ(s, t1) = IE[λ(t1)|F(s)] ≤ IE[λ(t2)|F(s)] = ψ(s, t2) a.s. (76)

The null set N2(s, t1, t2) where this inequality fails can depend on s, t1 and t2.
Define

N2
∆=

⋃
s,t1<t2∈[0,T ]∩IQ

N2(s, t1, t2). (77)

For ω 6∈ N2 we have

ψ(s, t1) ≤ ψ(s, t2) ∀ s, t1, t2 ∈ [0, T ] ∩ IQ, t1 < t2. (78)

If s ∈ [0, T ), we can choose a sequence {sn}n in [s, T ] ∩ IQ converging down to
s. Conclude that for ω 6∈ N2,

ψ(s, t1) = lim
n→∞

ψ(sn, t1) ≤ lim
n→∞

ψ(sn, t2) = ψ(s, t2) (79)

for all s ∈ [0, T ], t1, t2 ∈ [0, T ]∩ IQ, t1 < t2. For ω ∈ N2 we change the definition
of ψ(s, t), making it identically zero. Thus modified, ψ(s, t) has all the properties
it had before, and moreover, for every ω,

ψ(s, t1) ≤ ψ(s, t2) ∀ s ∈ [0, T ], t1, t2 ∈ [0, T ] ∩ IQ, t1 < t2. (80)

For s, t1, t2 ∈ [0, T ] ∩ IQ, t1 < t2 we also have

ψ(s, t2)− ψ(s, t1) = IE [λ(t2)− λ(t1)|F(s)] (81)
≤ IE [mt2−t1 |F(s)]
= Mt2−t1(s)
≤ M∗

t2−t1 a.s.

The null set N3(s, t1, t2) where this inequality fails can depend on s, t1 and t2.
Define

N3
∆=

⋃
s,t1<t2∈[0,T ]∩IQ

N2(s, t1, t2). (82)

For ω 6∈ N3 we have

ψ(s, t2)− ψ(s, t1) ≤M∗
t2−t1 ∀ s, t1, t2 ∈ [0, T ] ∩ IQ, t1 < t2. (83)

Using the continuity of ψ(s, t) in s, we get this inequality for every ω 6∈ N3 and
s ∈ [0, T ], t1, t2 ∈ [0, T ] ∩ IQ, t1 < t2. For ω ∈ N3, we modify the definition
of ψ(s, t), making it identically zero. Thus modified, ψ has all the properties
already established, and moreover, for every ω,

ψ(s, t2)− ψ(s, t1) ≤M∗
t2−t1 ∀ s ∈ [0, T ], t1, t2 ∈ [0, T ] ∩ IQ, t1 < t2. (84)

An immediate consequence of equations 70, 74 and 84 is that for each fixed
s ∈ [0, T ], the mapping t 7→ ψ(s, t) is right-continuous for all t ∈ [0, T ]∩IQ. This
mapping t 7→ ψ(s, t) also has left-limits (again for t ∈ [0, T ] ∩ IQ only), because
of the nondecreasing property 80.
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We need to define ψ(s, t) when t is irrational. To do that, we fix s ∈ [0, T ] and
an irrational number t ∈ [0, T ). We let tn ↓ t, where tn ∈ IQ for every n. For
m ≥ n, we have t < tm < tn and for every ω,

0 ≤ ψ(s, tn)− ψ(s, tm) ≤M∗
tn−tm . (85)

From equations 70 and 74 we see that {ψ(s, tn)}n is Cauchy, and thus has a
limit. If {t′n}n is a different sequence in (t, T ] ∩ IQ converging down to t, then
{ψ(s, t′n)}n also has a limit, and so does the sequence of ψ-values obtained by
interspersing the two sequences {tn}n and {t′n}n. To avoid a contradiction, all
three limits must be the same. Therefore,

ψ(s, t) ∆= lim
t′↓t,t′∈[0,T ]∩IQ

ψ(s, t′) (86)

is defined. For every ω, the mapping t 7→ ψ(s, t) is right-continuous for every
s ∈ [0, T ]. The nondecreasing property 80 is easily upgraded to

ψ(s, t1) ≤ ψ(s, t2) ∀ s, t1, t2 ∈ [0, T ], t1 < t2, ∀ω ∈ Ω. (87)

We know that for every t ∈ [0, T ]∩ IQ and every ω ∈ Ω the mapping s 7→ ψ(s, t)
is continuous. We want to establish this property when t is not necessarily
rational. Let ε > 0 be given. Let ω ∈ Ω be given and choose k so that M∗

δk
< ε

(see equation 80). If t1, t2 ∈ [0, T ] ∩ IQ and |t2 − t1| < δk then equations 70
and 84 imply

|ψ(s, t2)− ψ(s, t1)| < ε. (88)

If t ∈ [0, T ] and t2 ∈ [0, T ] ∩ IQ satisfies 0 < t2 − t < δk, then we can construct
a sequence t(n)

1 ↓ t of rational numbers. For each n we have

0 ≤ ψ(s, t2)− ψ(s, t(n)
1 ) < ε, (89)

and so
0 ≤ ψ(s, t2)− ψ(s, t) ≤ ε ∀ s ∈ [0, T ]. (90)

Now let s, s′ ∈ [0, T ] be given. We have

ψ(s′, t) = [ψ(s′, t)− ψ(s′, t2)] + [ψ(s′, t2)− ψ(s, t2)] (91)
+[ψ(s, t2)− ψ(s, t)] + ψ(s, t)

≤ 0 + [ψ(s′, t2)− ψ(s, t2)] + ε+ ψ(s, t)
= [ψ(s′, t2)− ψ(s, t2)] + ε+ ψ(s, t)

and similarly
ψ(s′, t) ≥ [ψ(s′, t2)− ψ(s, t2)]− ε+ ψ(s, t) (92)

Letting s′ → s in both 91 and 92 and using the continuity of s′ 7→ ψ(t2, s′), we
obtain

− ε+ ψ(s, t) ≤ lim inf
s′→s

ψ(s′, t) (93)

≤ lim sup
s′→s

ψ(s′, t)

≤ ε+ ψ(s, t)
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Since ε is arbitrary, we must have

ψ(s, t) = lim
s′→s

ψ(s′, t). (94)

In conclusion, ψ(s, t), 0 ≤ s, t ≤ T , satisfies for each ω ∈ Ω

(a) s 7→ ψ(s, t) is continuous for all t ∈ [0, T ],

(b) t 7→ ψ(s, t) is RCLL and nondecreasing for all s ∈ [0, T ]

(c) 0 ≤ ψ(s, t) ≤ C for all s, t ∈ [0, T ]

and for every s, t ∈ [0, T ] and a.e. ω

(d) ψ(s, t) = IE[λ(t)|F(s)].

For s ∈ [0, T ] and t ∈ [0, T ] ∩ IQ, (d) is just equation 75. For t ∈ [0, T ] we get
(d) from equation 75 and the right-continuity of both the mappings t 7→ ψ(s, t)
and t 7→ λ(t). This completes the proof of the lemma.

Corollary 4.8 If F ∗ = F∗, then u∗(S0) is the upper hedging price. The con-
dition F ∗ = F∗ is satisfied for a large class of options, including all path-
independent options, options which depend continuously on the final stock-price,
the maximal stock-price, the minimal stock-price and the average stock-price.

4.8 Properties of the Value Functions

Theorem 4.9 If F is lower semicontinuous, then all of the value functions
u(S0;λ), u∗(S0;λ), u∗(S0), u(S0; c), u(S0; ac), u(S0; acb) are lower semicontin-
uous in the initial stock price S0.

Proof. We first establish the lower semicontinuity of u(S0;λ): Let {xn}n be a
sequence of nonnegative real numbers converging to S0. Then

lim inf
n→∞

u(xn;λ) = lim inf
n→∞

IE
[
e−rT−αλ(T )g

(
xne

σW+µ−λ)]
Fatou
≥ IE

[
e−rT−αλ(T ) lim inf

n→∞
g
(
xne

σW+µ−λ)]
g lsc

≥ IE
[
e−rT−αλ(T )g

(
S0e

σW+µ−λ)]
= u(S0;λ)

Since F∗(ω, λ) = F (ω − 1
σλ), u∗(S0;λ) = u(S0; c) and hence u∗(S0;λ) is lower

semicontinuous in the initial stock price S0. Next we consider u(S0; c): To show
that this is lower semicontinuous, we can verify that for each real number a
the set {x : u(x; c) ≤ a} is a closed subet of IR. This set can be written as an
intersection of closed sets

{x : u(x; c) ≤ a} =
⋂
λ∈Lc

+

{x : u(x;λ) ≤ a}

and each of the sets {x : u(x;λ) ≤ a} is closed, because u(S0;λ) is lower
semicontiunous. By the Extension Theorems we can now also say that u∗(S0),
u(S0; ac) and u(S0; acb) are lower semicontinuous in the initial stock price S0,
because they all agree with u(S0; c). The proof is complete.
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4.9 Results for Path-Independent Contingent Claims

Let F = φ(ST ) in this subsection. We want to establish properties of the face-
lifted

φ̂(x) = sup
λ≥0

hλ(x),

where hλ(x)
∆= e−αλφ(xe−λ). The first result is

Theorem 4.10 If φ is lower semicontinuous, then φ̂ is also lower semicontin-
uous.

Proof. Let {xn}n be a sequence of nonnegative real numbers converging to x.
Then

lim inf
n→∞

hλ(xn) = e−αλ lim inf
n→∞

φ(xne−λ)

≥ e−αλφ(xe−λ)
= hλ(x),

because φ is lower semicontinuous. This implies that for any real number a the
set {x : hλ(x) ≤ a} is closed. Therefore

{x : φ̂(x) ≤ a} =
⋂
λ≥0

{x : hλ(x) ≤ a}

is closed as well, which in turn implies the lower semicontinuity of φ̂.

If φ is not lower semicontinuous, then face-lifting does not necessarily produce
the correct value function (see our example of the Cactus Option). On the other
hand, we would really like to take an upper semicontinuous φ, because then we
get the following

Theorem 4.11 If φ is upper semicontinuous, then there exists for each x ∈
[0,∞) a maximizing number λ∗(x) ∈ [0,∞] such that

φ̂(x) = e−αλ
∗(x)φ(xe−λ

∗(x)).

Moreover, the maximizing control λ∗ ∈ Lrc
+ for the value function u∗(S0) is given

by the formula
λ∗(ω, t) = II{t=T}λ

∗(S(ω)(T )).

Proof. Recall that every upper semicontinuous function on a compact domain
attains its maximum and notice that we can write

φ̂(x) = sup
λ∈[0,∞]

e−αλφ(xe−λ) = sup
ν∈[0,1]

ναφ(xν).

Now, [0, 1] is compact, ναφ(xν) is upper semicontinuous in ν for each fixed x.
Hence there exists indeed for each fixed x a maximizing number ν∗(x). Set
λ∗(x) = − log ν∗(x) to get the maximizing λ∗(x). For the second part of the
theorem, observe that due to the F ∗/F∗-Identification theorem we know that

u∗(S0) = sup
λ∈Lrc

+

IE
[
e−rT−αλ(T )φ(ST e−λ(T ))

]
.
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It should be pointed out that any maximizing control will be zero before time
T , because the term inside the expectation only depends on λ(T ). Since jumps
are allowed, it can save all of the necessary controlling effort until time T. This
means that we are really only maximizing over random variables λ(T ) ≥ 0 rather
than entire processes:

u∗(S0) = sup
λ(T )≥0

IE
[
e−rT−αλ(T )φ(ST e−λ(T ))

]
= sup

λ≥0
IE
[
e−rT−αλφ(ST e−λ)

]
= IE

[
sup
λ≥0

e−rT−αλφ(ST e−λ)
]
.

The last step just says that we can do the maximization pathwise. The proof
of the theorem is complete.

The relevance of this theorem is the conjected one-to-one correspondence be-
tween the maximizing control and the cheapest hedge. The fact that it is true
in the path-independent case underlines our conjecture. The next theorem dis-
solves the dilemma, that on the one hand for existence of the maximizing control
we need upper semicontinuity, and on the other hand, to get the upper hedging
price right, it would be nice to have lower semicontinuity of the payoff. Cer-
tainly, we are in good shape if the payoff is continuous, but we can say more:

Theorem 4.12 Let the lower semicontinuous version of a given payoff φ be

φ∗(x)
∆= inf
xn→x

lim inf
n→∞

φ(xn).

(This is the function F∗!) If

φ̂ = φ̂∗,

then even starting with the not necessarily lower semicontinuous φ face-lifting
produces the correct upper hedging price.
If, additionally, φ is upper semicontinuous, then the control problem admits a
maximizer.

Proof. Let h(φ) be the upper hedging price starting with the payoff φ. Since
φ∗ is lower semicontinuous, the results from [KARATZAS and SHREVE 5.7.1]
tell us that

h(φ∗) = IE
[
e−rT φ̂∗(ST )

]
.
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We continue as follows:

h(φ∗) = IE
[
e−rT φ̂∗(ST )

]
= IE

[
e−rT φ̂(ST )

]
= IE

[
sup
λ≥0

e−rT−αλφ(ST e−λ)
]

= sup
λ∈Lrc

+

IE
[
e−rT−αλ(T )φ(ST e−λ(T ))

]
≥ sup

λ∈Lacb
+

IE
[
e−rT−αλ(T )φ(ST e−λ(T ))

]
= h(φ)

φ≥φ∗
≥ h(φ∗),

and so everything is in fact equal. This completes the proof of the theorem. Its
relevance is of practical nature: The two digital put options

(1) φ(x) = II{x<B} (this is lower semicontinuous.)

(2) φ(x) = II{x≤B} (this is upper semicontinuous.)

should have the same φ̂, and in fact they do! The first one is the lower semi-
continuous version of the second one. However, only the upper semicontinuous
version admits a maximizing control.

4.10 Future Research Topics

Conjecture 4.13 There is a maximizing control λ∗ ∈ Lrc
+ for the value function

u∗(S0), i.e. u∗(S0) = u∗(S0;λ∗).

Remark. There are some existence results available in the literature, for in-
stance in [KARATZAS and SHREVE: Connections between Optimal Stopping
and Singular Stochastic Control I. Monotone Follower Problems (1984)]. The
existence for a minimizer there firmly rests on the convexity of the cost function.
Our cost functions, however, completely fail to be concave. The most promising
procedure here to prove existence of a maximizer is to establish the following
result and then use the known fact that the cheapest hedge exists.

Conjecture 4.14 There is a one-to-one correspondence between the optimal
control (in case of its existence) and the cheapest hedge which superreplicates F
and obeys the shortselling constraint.

Remark. There is a striking similarity between the consumption process and
the maximizing control: Both are adapted, nondecreasing, right-continuous pro-
cesses starting at zero. They are, however, not immediately comparable: the
control is dimensionless, but the consumption is a dollar-amount. Besides that,
establishing the proposed one-to-one correspondence probably requires taking
equivalence classes of controls, because we have learned in the example of a put
option with a continuum of maximizing controls that maximizers themselves are
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not uniquely determined.

We want to outline how this correspondence works for the path-independent
case. It has been proved in [KARATZAS and SHREVE, Methods of Mathe-
matical Finance, chapter 5.7] that the hedge consists of the pair (π(t), C(t)) of
portfolio-investment and consumption, which does the following: π is the Delta
of the face-lifted option, and the consumption is given by

C(t) = II{t=T}(φ̂(ST )− φ(ST )).

At time T , we skip the time-dependence and focus on the dependence of the
final stock price ST . Naming this x we can write

C(x) = φ̂(x)− φ(x).

We are now instantly able to write down the equation that connects the con-
sumption C and the optimal control λ∗: both of them are zero before T , and
at time T , we must have for all x ∈ [0,∞)

c(x) = e−αλ
∗(x)φ

(
xe−λ

∗(x)
)
− φ(x). (95)

This shows how easy it is to get the consumption if the maximizing control is
known. The harder question is how to retrieve the maximizing control if only
the consumption is given (and of course the contingent claim φ is known). We
believe this can be done as well, and here is how: We take the assumption of
theorem 4.12: An upper semicontinuous φ which produces the same φ̂ as its
lower semicontinuous version φ∗. We have proved in theorem 4.10 that φ̂ is
lower semicontinuous. Therefore,

φ̂− φ is lower semicontinuous, (96)

and consequently, the set

I
∆= {x : C(x) > 0} is open. (97)

We may thus write this set as a disjoint union of countably many open intervals

{x : C(x) > 0} =
·⋃

n∈IN
(ln, rn). (98)

We allow one of the right endpoints rn to be ∞, and we allow I to be empty
(for those options which do not cause a shortselling problem). The maximizing
control λ∗ is then given by the formula

λ∗(x) ∆=
∑
n∈IN

II(ln,rn)(x) [log(x)− log(ln)] . (99)

For a proof, we must verify that equation 95 holds. For x 6∈ I this equation just
says 0 = φ(x) − φ(x), which is a good sign. For x ∈ I, x must be contained in
one of the intervals (ln, rn), and in this case equation 95 looks like

φ̂(x) = φ(ln)
(
ln
x

)α
. (100)
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This is the solution to the ordinary differential equation

αφ̂(x) + xφ̂′(x) = 0, x ∈ (ln, rn) (101)

φ̂(ln) = φ(ln). (102)

The rest is a verification of conjecture 4.17, which says that for positive con-
sumption the shortselling constraint is tight. This would imply equation 101.
The initial condition 102 is obvious, because φ̂ is certainly never below φ, and
φ̂(ln) > φ(ln) would violate the minimality.

The whole procedure probably becomes much clearer, when we look at an ex-
ample. Let’s take the vanilla put option φ(x) = (K−x)+. We get (see example
section)

φ̂(x) =
{
K − x if x ≤ α

1+αK
K

1+α ( αK
(1+α)x )α if x ≥ α

1+αK

}
(103)

and so

I = {x : C(x) > 0} =
(

α

1 + α
K,∞

)
. (104)

Equation 99 translates into

λ∗(x) = II{x> α
1+αK}

[
log(x)− log

(
α

1 + α
K

)]
(105)

=
[
log(x)− log

(
α

1 + α
K

)]+
as it should and setting l1

∆= α
1+αK we can write φ̂ as

φ̂(x) =
{
φ(x) if x ≤ l1
φ(l1)

(
l1
x

)α
if x ≥ l1

}
(106)

This example visualizes the problem in a wonderful way: Whereas C describes
the horizontal distance of φ̂ and φ, the optimal control λ∗ describes the vertical
logarithmic distance of φ̂ and φ̌, where the dropped option φ̌ is the smallest
nonnegative option which produces the same φ̂ as φ. In our example

φ̌(x) =
{
K − x if x ≤ l1
0 if x > l1

}
(107)

By drawing a diagram, the reader will notice that we have given a graphical
algorithm to determine the maximizing control λ∗ purely from knowing the
consumption C!

How does equation 95 look in the path-dependent case? Let F = g(S) be
an upper semicontinuous path-dependent contingent claim and assume that its
extension F ∗ equals g. Then general option pricing theory tells us that any
candidate for a maximizing control λ∗ must satisfy

IE

[∫ T

0

e−rt dC(t) + e−rT g(S)

]
= IE

[
e−rT−αλ

∗(T )g
(
Se−λ

∗
)]

(108)
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In the path-independent setup this is actually an ω-wise agreement. We would
thus pose the question: Is equation 108 true even before we take expectations?
And would it help to retrieve λ∗ from a known g and C?

Conjecture 4.15 u∗(S0) is the upper semicontinuous version of u∗(S0), as our
notation already indicates.

We are motivated to state this conjecture essentially from the Up-and-Out
Call. The path-independent case certainly has this property, but since the
Heat-equation smoothens everything out, we only see the statement happen at
expiration.

Conjecture 4.16 The shortselling constraint is tight (i.e. satisfied with equal-
ity) if and only if the optimal control is active.

In the path-independent case we can clarify this as follows and attempt the

Conjecture 4.17 Assuming enough differentiability, if φ̂(x) > φ(x) then φ̂

satisfies the shortselling constraint with equality, i.e. w(x) ∆= αφ̂(x)+xφ̂′(x) = 0.

Without loss of generality we let φ̂(x) > φ(x) for x in one of the intervals (ln, rn).
We must then show that for these x, the function w(x) = 0. If the maximizer
λ∗ is also differentiable, then we get

w(x) = e−αλ
∗(x)

(
1− x

∂λ∗

∂x
(x)
)[

αφ
(
xe−λ

∗(x)
)

+ xe−λ
∗(x)φ′

(
xe−λ

∗(x)
)]
(109)

and this is indeed a zero, if we can derive the particular form of λ∗ which we
have outlined above, namely λ∗(x) = log(x)− log(ln). Here ∂λ∗

∂x (x) = 1
x causing

the term
(
1− x∂λ

∗

∂x (x)
)

to be zero. Additionally, for this λ∗ the other term
collapses to [αφ (ln) + lnφ

′ (ln)]. The left endpoint ln, left of which this quan-
tity must be nonnegative (otherwise ln would be further to the left), and right
of which this quantity must be negative (otherwise we wouldn’t have lifted φ
there), makes the term (assuming enough continuity) [αφ (ln) + lnφ

′ (ln)] equal
to zero.
This conjecture gives us a good understanding how to produce φ̂ in an algo-
rithmic way: Check for all x ≥ 0 from left to right, whether φ(x) satisfies the
shortselling constraint [αφ (x) + xφ′ (x)] ≥ 0 (A subdifferential interpretation of
φ′ is sufficient). Take l1 be the “first” (i.e. the infimum) x, where the short-
selling constraint is violated, set φ̂(x) = φ(x) for all x ≤ l1 and from l1 onwards
take φ̂(x) = φ(l1)

(
l1
x

)α
. Do this until r1 being the first x when φ̂(x) hits φ(x)

again. After r1 set φ̂(x) = φ(x) and let l2 be the first x > r1 where φ(x) vio-
lates the shortselling constraint, etc. This works beautifully for the vanilla put
option and produces φ̂ in a very transparent and quick way. Check!! It com-
pletely illuminates the general structure of face-lifting as well as the structure of
a maximizing control: φ̂ agrees with φ where φ already satisfies the shortselling
constraint and thus requires no further lifting. Otherwise φ̂ is the decreasing
branch of a hyberbola, whose left endpoint is continuous and there may be at
most a jump up at the right endpoint. λ∗ pushes the final stock price back to
these left endpoints in all the hyperbolic regions. Everything has been visualized!
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In generaI I can only observe that these conjectures are correct in the exam-
ples. I strongly believe that they are true in some generality at least under
certain conditions. However, I will postpone the clarifiction of these conjectures
to future research.

5 Examples

5.1 The Digital Put Option

F (ω) ∆= φ
(
S0e

σω(T )+(r− 1
2σ

2)T
)
, φ(x) ∆= CII{x≤B}

for some positive nominal amount C and positive strike B. We may frequently
use the shorthand notation F = φ(ST ) to suppress the little ω’s. Then

F ∗ = φ(ST e−λ(T ))

and the control problem becomes

u(S0) = sup
λ∈Lrc

+

∫
Ω

e−rT−αλ(T,ω)F ∗(ω, λ(ω)) dIP (ω)

= e−rT sup
λ∈Lrc

+

IE[e−αλ(T )φ(ST e−λ(T ))]

= e−rT IE[e−αλ
∗(T )φ(ST e−λ

∗(T ))],

where
λ∗(t) = (logST − logB)+II{t=T} (110)

is the maximizing control: a process that is identically zero before expiration
time T and has a random jump up at T . This means that the stock price remains
uncontrolled until time T , and at T , the stock is pushed down to the strike, if it
is above the strike, and otherwise remains uncontrolled. To understand that this
is true, recall that φ can only take values in {0, C}, so to maximize the above
expected value, it is always (i.e. for all IP -a.e. ω) better to get a C than a 0,
no matter how much that C will be discounted. Now, to make sure φ = C for
IP -a.e. ω, ST must stay at or below the strike B. Since unnecessary discounting
should be avoided, λ only pushes, when ST is above B. This explains why the
formula is right at the final time T . To see why λ does not act any time before,
recall that all controls are nondecreasing: this means that once we have pushed
there is now way to take this effort back, however, pushing at any time causes
discounting and this effect reduces the value. But for any fixed path ω, when
we have pushed at a time prior to time T, it could be, that at time T, we need
not have pushed at all, because the stock is already below the strike.
With this λ∗, u(S0) can be written as

u(S0) = e−rT IE[φ̂(ST )].

We used the face-lifting equation

φ̂(x) ∆= sup
π∈C̃

[e−δ(ν)φ(xe−ν)] here=
{

1 if x ≤ B
(Bx )α if x ≥ B

}
,
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where the support function of the closed convex set C here= [−α,∞) is

δ(ν) ∆= sup
ν∈C

(−πν) here=
{
αν if ν ≥ 0
∞ if ν < 0

}
and

C̃
∆= {ν : δ(ν) <∞} here= [0,∞)

is its effective domain [see ROCKAFELLAR]. This shows that our approach
contains the results of the paper by [BROADIE, CVITANIĆ and SONER] as a
special case. Their maximizing ν of the face-lifting equation is our maximizing
λ(T ) of the stochastic control problem. This correspondence is true for all non-
pathdependent options. For such options we can always repeat the argument
above to conclude that λ(t) = 0 for t < T . In our case we could compute
u(S0; 0) and u∗(S0) explicitely. The maximizing λ∗ does not depend on the
values φ takes below B, as long as φ is nondecreasing before B.
The generalized face-lifting equation can be described as

F̂ (ω) = e−αλ
∗(ω)(T )F ∗(ω, λ∗(ω)).

This means that, suppose we have found a maximizing control process λ∗, and
we compute F̂ as proposed above, then F̂ is the option we are actually hedging.
By doing that, we will superreplicate the payoff F and our hedge will satisfy
the shortselling constraint. Moreover, the initial value IE[e−rT F̂ ] is the minimal
amount to do that.
Any other non-pathdependent option is handled similarly and covered in the
paper by [BROADIE, CVITANIĆ and SONER]. However, we need to point out
at this place that the face-lifting procedure does not work for all functions, for
instance:

5.2 A Cactus Option

F = φ(ST ), φ(x) ∆= II{x=K}

for some positive strike K. Then

F ∗ = φ(ST e−λ(T ))

and the control problem becomes

u(S0) = sup
λ∈Lrc

+

∫
Ω

e−rT−αλ(T,ω)F ∗(ω, λ(ω)) dIP (ω)

= e−rT sup
λ∈Lrc

+

IE[e−αλ(T )φ(ST e−λ(T ))]

= e−rT IE[e−αλ
∗(T )φ(ST e−λ

∗(T ))],

where
λ∗(t) = (logST − logK)+ II{t=T} (111)

is the maximizing control. Using this λ∗ we can compute the expected value as

IE[e−αλ
∗(T )φ(ST e−λ

∗(T ))] = IE[φ̂(ST )],
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where

φ̂(x) =
{

0 if x < B
(Bx )α if x ≥ B

}
.

Of course, there must be something wrong. The cactus option φ is almost surely
equal to zero, whence we would expect φ̂ to be zero as well. This example shows
that we do need to require φ to be lower semicontinuous or at least φ̂ = φ̂∗,
where

φ∗(x)
∆= inf

{
lim inf
n→∞

φ(xn)
∣∣∣xn n→∞−→ x

}
is the lower semicontinuous version of φ. Our cactus option satisfies none of
these assumptions: φ is not lower semicontinuous and φ∗ is identically zero and
so is φ̂∗.

5.3 The Vanilla Put Option

Although the analysis of path-indedpendent options is now clear, we still want
to look at a vanilla put option, because its analysis will help us to take further
steps to the path dependent lookback put option, the Asian put option and the
barrier put options. Let

F = φ(ST ), φ(x) ∆= (K − x)+

for some positive strike K. Then

F ∗ = φ(ST e−λ(T ))

and the control problem becomes

u∗(S0) = sup
λ∈Lrc

+

∫
Ω

e−rT−αλ(T,ω)F ∗(ω, λ(ω)) dIP (ω)

= e−rT sup
λ∈Lrc

+

IE[e−αλ(T )φ(ST e−λ(T ))]

= e−rT IE[e−αλ
∗(T )φ(ST e−λ

∗(T ))],

where

λ∗(t) =
(

logST − log
[

α

1 + α
K

])+

II{t=T} (112)

is the maximizing control. Using this λ∗ we can compute the expected value as

IE[e−αλ
∗(T )φ(ST e−λ

∗(T ))] = IE[φ̂(ST )],

where

φ̂(x) =
{
K − x if x ≤ α

1+αK
K

1+α ( αK
(1+α)x )α if x ≥ α

1+αK

}
.

5.4 A Put Option with a continuum of maximizing con-
trols

F = φ(ST ), φ(x) ∆=


(a− x)αa−α−1 + a−α if 0 ≤ x ≤ a
x−α if a ≤ x ≤ b
(b− x)αb−α−1 + b−α if b ≤ x ≤ b 1+α

α
0 if b 1+α

α ≤ x
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for some numbers 0 < a < b. Then

F ∗ = φ(ST e−λ(T ))

and as before the control problem is solved by

u∗(S0) = e−rT IE[e−αλ
∗(T )φ(ST e−λ

∗(T ))],

where λ∗(t) = 0 for t < T and we may take any

λ∗(T ) ∈
[
(log

ST
b

)+, (log
ST
a

)+
]

(113)

as a maximizing control. Using one of them we can compute the expected value
as

IE[e−αλ
∗(T )φ(ST e−λ

∗(T ))] = IE[φ̂(ST )],

where

φ̂(x) =
{

(a− x)αa−α−1 + a−α if 0 ≤ x ≤ a
x−α if a ≤ x

}
.

To get φ̂ from φ, recall that φ̂ is the smallest payoff which dominates φ and
satisfies the shortselling constraint αφ(x)+xφ′(x) ≥ 0. Here, φ already satisfies
this constraint for x ≤ b. Above b, φ̂ satisfies the constraint with equality, so it
can’t be any smaller.
Such an option is not likely to be traded, but we learn from this example that
a maximizing control is in general not uniquely determined.

5.5 The Lookback Put Option

This is an example which illuminates that, although controlling takes place only
at the end, λ(T ) is not always just a function of S(T ), but can be a function of
the whole path.

F = max
t∈[0,T ]

S(t)− S(T )

F ∗ has been identified as

F ∗ = sup
t∈[0,T ]

[S(t)e−λ(t)]− S(T )e−λ(T )

and the control problem becomes

u∗(S0) = sup
λ∈Lrc

+

IE

[
e−rT−αλ(T )

(
sup
t∈[0,T ]

[S(t)e−λ(t)]− S(T )e−λ(T )

)]
.

First observe pathwise that controlling at the end only is at least as good as
splitting the controlling effort over time, whence we need to consider only con-
trols satisfying λ(t) = 0 for t < T . Secondly observe that for such controls

sup
t∈[0,T ]

[S(t)e−λ(t)] = sup
t∈[0,T ]

S(t) = max
t∈[0,T ]

S(t).

Now the control problem reads as

u∗(S0) = sup
λ≥0

IE

[
e−rT−αλ

(
max
t∈[0,T ]

S(t)− S(T )e−λ
)]

, (114)
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which is exactly the same control problem as in the case of the vanilla put
option. The only difference is that maxt∈[0,T ] S(t) takes the role of the strike
K. We can hence do the same computation to get the maximizing control

λ∗(t) =
(

logS(T )− log
[

α

1 + α
max
t∈[0,T ]

S(t)
])+

II{t=T}. (115)

To compute the value function we need to evaluate

u∗(S0) = e−rT IE[φ̂(ST , max
t∈[0,T ]

S(t))],

where

φ̂(x, y) =
{
y − x if x ≤ α

1+αy
y

1+α ( αy
(1+α)x )α if x ≥ α

1+αy

}
.

The minimality of this value function is covered by the general theory. To see
that the value function will allow a hedge that respects the shortselling con-
straint and superreplicates a lookback put option, we can actually go through a
direct argument using partial differential equations. This is a worthwile exercise:

Proposition 5.1 φ̂(x, y) is increasing and convex in y.

This can be verified by ordinary calculus. To get hold of a value function with
payoff φ̂(x, y), define the following partial differential equation: Assume v̂(t, x, y)
satisfies for all x < y

1. v̂t − rv̂ + rxv̂x + 1
2σ

2x2v̂xx = 0

2. v̂(T, x, y) = φ̂(x, y)

3. v̂y(t, x, x) = 0 (Neuman boundary condition)

Define

Mt
∆= max

u∈[0,t]
S(u) (116)

Y (t) ∆= e−rT v̂(t, S(t),M(t)), (117)

compute the differential dY , integrate from t to T and take expectations con-
ditioned on S(t) = x, M(t) = y, resulting in

v̂(t, x, y) = e−r(T−t)IE[φ̂(S(T ),M(T ))|St = x,Mt = y]. (118)

This value function certainly dominates the corresponding value function of the
unconstrained lookback put option, v(t, x, y), which is the same as v̂ except that
v̂(T, x, y) = y − x ≤ φ̂(x, y).

Proposition 5.2 v̂(t, x, y) is convex in y.

To prove this, let
M(t, T ) ∆= max

u∈[t,T ]
S(u), (119)
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such that MT = max(Mt,M(t, T )). If now for some ξ ∈ [0, 1], Mt = ξy1 + (1−
ξ)y2, then

MT = max[M(t, T ), ξy1 + (1− ξ)y2] (120)
≤ ξmax[(M(t, T ), y1] + (1− ξ) max[M(t, T ), y2], (121)

because the function (a, b) 7→ max[a, b] is convex in both variables. Now let
ξ ∈ [0, 1] be given. We compute

e−r(T−t)v̂(t, x, ξy1 + (1− ξ)y2)

= IE[φ̂(ST ,MT )|St = x,Mt = ξy1 + (1− ξ)y2]

= IE[φ̂(ST ,max[M(t, T ), ξy1 + (1− ξ)y2])|St = x]

≤ IE[φ̂(ST , ξmax[(M(t, T ), y1] + (1− ξ) max[M(t, T ), y2])|St = x]

≤ ξIE[φ̂(ST ,max[M(t, T ), y1])|St = x]

+(1− ξ)IE[φ̂(ST ,max[M(t, T ), y2])|St = x]
= e−r(T−t)[ξv̂(t, x, y1) + (1− ξ)v̂(t, x, y2)],

where we have used that φ̂(x, y) is increasing and convex in y. The convexity
of v̂(t, x, y) in its y-variable follows and results in

v̂yy(t, x, y) ≥ 0 ∀ x ≤ y. (122)

Proposition 5.3 v̂ respects the shortselling constraint.

Now let us define

w(t, x, y) ∆= αv̂(t, x, y) + xv̂x(t, x, y). (123)

We derive
wy(t, x, y) = αv̂y(t, x, y) + xv̂xy(t, x, y). (124)

We have assumed that v̂y(t, x, x) = 0, so taking its total differential yields
v̂xy(t, x, x) + v̂yy(t, x, x) = 0 and thus wy(t, x, x) = −xv̂yy(t, x, x) ≤ 0 for all x
and t.
Here is a summary of the properties of w:

1. wt − rw + rxwx + 1
2σ

2x2wxx = 0

2. w(T, x, y) = (αy − (1 + α)x)+ ≥ 0

3. wy(t, x, x) = −xv̂yy(t, x, x) ≤ 0

Now define
Y (t) ∆= e−rTw(t, S(t),M(t)), (125)

compute its differential dY , integrate from t to T and take expectations condi-
tioned on S(t) = x, M(t) = y, resulting in

w(t, x, y) ≥ e−r(T−t)IE[w(T, S(T ),M(T ))|St = x,Mt = y] ≥ 0, (126)

and consequently by the definition of w

αv̂(t, x, y) + xv̂x(t, x, y) ≥ 0 ∀ t ≤ T, x ≤ y, (127)

which means that v̂ respects the shortselling constraint.
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5.6 The Asian Put Option

The control problem is easy to identify even here. Let

F =

(
1
T

∫ T

0

S(t) dt− S(T )

)+

(128)

F ∗ has been identified as

F ∗ =

(
1
T

∫ T

0

S(t)e−λ(t) dt− S(T )e−λ(T )

)+

(129)

and the control problem becomes

u∗(S0) = sup
λ∈Lrc

+

IE

e−rT−αλ(T )

(
1
T

∫ T

0

S(t)e−λ(t) dt− S(T )e−λ(T )

)+
 .
(130)

First observe pathwise that controlling at the end only is at least as good as
splitting the controlling effort over time, whence we need to consider only con-
trols satisfying λ(t) = 0 for t < T . Secondly observe that for such controls∫ T

0

S(t)e−λ(t) dt =
∫ T

0

S(t) dt.

Now the control problem reads as

u∗(S0) = sup
λ≥0

IE

e−rT−αλ( 1
T

∫ T

0

S(t)− S(T )e−λ
)+
 , (131)

which is exactly the same control problem as in the case of the vanilla put
option. The only difference is that 1

T

∫ T
0
S(t) dt takes the role of the strike K.

We can hence do the same computation to get the maximizing control

λ∗(t) =

(
logS(T )− log

[
α

1 + α

1
T

∫ T

0

S(t) dt

])+

II{t=T}. (132)

To compute the value function we need to evaluate

u∗(S0) = e−rT IE

[
φ̂

(
ST ,

1
T

∫ T

0

S(t) dt

)]
,

where

φ̂(x, y) =
{
y − x if x ≤ α

1+αy
y

1+α ( αy
(1+α)x )α if x ≥ α

1+αy

}
.
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5.7 The Up and Out Call Option

F = (S(T )−K)+II{S(t)≤B∀t∈[0,T ]}

for some positive strike K and positive barrier B > K.

F ∗ = (S(T )e−λ(T ) −K)+II{S(t)e−λ(t)≤B∀t∈[0,T ]}

The control problem

u∗(S0) = sup
λ∈Lrc

+

IE
[
e−rT−αλ(T )

(
(S(T )e−λ(T ) −K)+II{S(t)e−λ(t)≤B∀t∈[0,T ]}

)]
is solved by

λ∗(t) = max
u∈[0,t]

[logS(u)− logB]+, (133)

which is the singularly continuous process, which pushes the stock just enough
to prevent it from crossing the barrier. If we were only going to check at the
final time T , whether the barrier has been crossed, then λ∗ would coincide with
the optimal control of the Digital Put Option. We observe also that a time
dependent barrier B(t) would yield the similar solution

λ∗(t) = max
u∈[0,t]

[logS(u)− logB(u)]+. (134)

In this case we could still solve the value function numerically, although an
explicit analytical solution like in the constant barrier case seems impossible.

5.8 The Realistic Up and Out Call Option

F = (S(T )−K)+
N∏
i=1

II{S(ti)≤B}

for some positive strike K, some positive barrier B > K and some checkpoints
0 ≤ t1 < t2 < · · · < tN ≤ T .

F ∗ = (S(T )e−λ(T ) −K)+
N∏
i=1

II{S(ti)e−λ(ti)≤B}

The control problem

u∗(S0) = sup
λ∈Lrc

+

IE

[
e−rT−αλ(T )

(
(S(T )e−λ(T ) −K)+

N∏
i=1

II{S(ti)e−λ(ti)≤B}

)]

is solved by
λ∗(t) = max

u∈[0,t]∩{t1,...,tN}
[logS(u)− logB]+, (135)

which is the singular jump process that pushes the stock down to the barrier
at all the checkpoints if necessary. We note that here we could use a time
dependent barrier as well.

60



5.9 The Up and Out Put Option

F = (K − S(T ))+II{S(t)≤B∀t∈[0,T ]}

for some positive strike K and positive barrier B.

F ∗ = (K − S(T )e−λ(T ))+II{S(t)e−λ(t)≤B∀t∈[0,T ]}

The control problem

u∗(S0) = sup
λ∈Lrc

+

IE
[
e−rT−αλ(T )

(
K − (S(T )e−λ(T ))+II{S(t)e−λ(t)≤B∀t∈[0,T ]}

)]
is solved by

λ∗(t) = max
u∈[0,t]

[logS(u)− logB(u)]+, (136)

B(u) =

{
B if u < T

min
[
B, α

1+αK
]

if u = T

}
.

which is the singular process, which pushes the stock just enough to prevent it
from crossing the barrier. At the final time we are back at the vanilla put, so we
give the stock an additional final push down to α

1+αK, if it is above that number.
It is a worthwhile exercise to solve the control problem directly and compute
u∗(S0) explicitely. As in the case of the Up-and-Out Call we define v(t, x;α) to
be the solution to the partial differential equation with the conditions

−rv + vt + rxvx +
1
2
σ2x2vxx = 0, 0 ≤ t < T, 0 < x < B

αv(t, B;α) +Bvx(t, B;α) = 0, 0 ≤ t ≤ T

φ̂(x) ∆= v(T, x;α) =


K − x if x ≤ B ∧ α

1+αK
K

1+α ( αK
(1+α)x )α if B ≥ x ≥ α

1+αK

0 if x > B

To find the solution let
M(t) ∆= max

0≤u≤t
S(u). (137)

We define the value of an auxiliary contingent claim by

w(t, x;α) ∆= IE
[
e−r(T−t)[αK − (1 + α)S(T )]+II{M(T )<B}|St = x

]
, (138)

and list some properties of w(t, x;α):

(i) e−rtw(t, S(t);α) is a martingale, and therefore

(ii) w(t, x;α) satisfies the Black-Scholes partial differential equation.

(iii) w(t, B;α) = 0

(iv) 0 ≤ w(t, x;α) ≤ αK and w(t, 0;α) = e−r(T−t)αK

(v) w(T, x;α) = [αK − (1 + α)x]+II{x<B}

(vi) w(t, x;α) is continuous on [0, T ]× [0, B].
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Now we define in the familiar way

v(t, x;α) ∆=
∫ 1

0

yα−1w(t, xy;α)dy (139)

and derive a list of properties of v(t, x;α):

(i) v(t, x;α) satisfies the Black-Scholes partial differential equation.

(ii) 0 ≤ v(t, x;α) ≤ K and v(t, 0;α) = e−r(T−t)K.

(iii) xvx(t, x;α) + αv(t, x;α) = w(t, x;α) and therefore in particular

(iv) Bvx(t, B;α) + αv(t, B;α) = 0.

(v) v(T, x;α) = φ̂(x)

(vi) v(t, B;α) =
∫ 1

0
yα−1w(t, By;α)dy

(vii) v(t, x;α) is continuous on [0, T ]× [0, B].

(viii) limx→0 xvx(t, x) = 0

An explicit analytical solution can be found by first computing

w(t, x;α) = (1 + α)V (t, x),

where V is the value function of an unconstrained up-and-out put option with
barrier B and strike K ′ ∆= α

1+αK, and then evaluate equation 139. For the prac-
titioner we derive the formula for V (t, x): We set up the Brownian motion with
drift W̃ (t) ∆= W (t)+θ−t and its running minimum m̃(t) ∆= min0≤u≤t W̃ (u). Next
we look up the joint density of the random pair (W̃ (T ), m̃(T )) in [BORODIN
and SALMINEN 2.1, formula 1.2.8]:

f(m̃, w̃) = exp(θ−w̃ −
1
2
θ2−T )

2(w̃ − 2m̃)
T
√

2πT
exp

(
− (w̃ − 2m̃)2

2T

)
, (140)

m̃ < 0, w̃ > m̃, θ±
∆=
r

σ
± σ

2
.

write

V (0, S0) = IE
[
e−rT (K ′ − ST )+II{min0≤t≤T St≥B}

]
= e−rT IE

[
(K ′ − S0e

σW̃T )+II
{S0e

σ min0≤t≤T W̃t≥B}

]
= e−rT

∫ x= 1
σ log K′

x

x= 1
σ log B

x

∫ y=x∧0

y= 1
σ log B

x

(K ′ − S0e
σx) f(y, x) dy dx (141)

The rest is elementary calculus (and patience). We also refer the reader to
[RICH] for more formulas and comparative statics of barrier options.

We would now like to prove the identities

v(0, S0;α) = IE

[
e−rT−αλ

∗(T )
(
K − S(T )e−λ

∗(T )
)+
]

= sup
λ∈Lrc

+

IE
[
e−rT−αλ(T )

(
(K − S(T )e−λ(T ))+II{S(t)e−λ(t)≤B∀t∈[0,T ]}

)]
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directly: The second one is obvious, because the minmal effort to make the
indicator equal one is reflection at the barrier, which λ∗ does. Using this λ∗,
the indicator can be dropped. The maximizing λ∗(T ) is the one we derived
in the vanilla put option. Let us now approach the first equality. For a fixed
λ ∈ Lrc

+ define the controlled stock price process Sλ, its running supremum Mλ

and the first crossing time τ by

Sλ(0) ∆= S(0) (142)

dSλ(t) ∆= Sλ(t)[rdt+ σdW (t)− dλ(t)] (143)

Mλ(t) ∆= sup
u≤t

Sλ(u) (144)

τ
∆= T ∧ inf{t ≥ 0 : Sλ(t) > B} (145)

Furthermore we need to include the dependence of v of the running supremum.
So let us define a function v(t, x, y;α) by

−rv + vt + rxvx +
1
2
σ2x2vxx = 0, 0 ≤ t < T, 0 < x < B

vy = 0, 0 ≤ t < T, 0 < x ≤ y ≤ B

αv(t, B,B;α) +Bvx(t, B,B;α) = 0, 0 ≤ t ≤ T

φ̂(x) ∆= v(T, x, y;α) =


K − x if x ≤ B ∧ α

1+αK
K

1+α ( αK
(1+α)x )α if B ≥ x ≥ α

1+αK

0 if x > B

v = 0, x > B

We understand that vy(t, x,B;α) means limy↑B vy(t, x, y;α). Of course, v jumps
down to zero, as y crosses the barrier. Now we compute the differential

d
(
e−rt−αλ(t)v(t, Sλt ,M

λ
t ;α)

)
= e−rt−αλ(t)

{
Lvdt− (αv + Sλt vx)dλ(t) + vydM

λ
t + σSλt vxdWt

}
(146)

We integrate from 0 to T and take expecations:

IE
[
e−rT−αλ(T )v(T, SλT ,M

λ
T ;α)

]
− v(0, S0, S0;α)

= IE

∫ τ

0

e−rt−αλ(t)
{
Lvdt− (αv + Sλt vx)dλ(t) + vydM

λ
t + σSλt vxdWt

}
+ IE

∫ T

τ

e−rt−αλ(t)
{
Lvdt− (αv + Sλt vx)dλ(t) + vydM

λ
t + σSλt vxdWt

}
= −IE

∫ τ

0

e−rt−αλ(t)(αv + Sλt vx)dλ(t)

≤ 0 (147)

We conclude that for all λ ∈ Lrc
+

v(0, S0, S0;α) ≥ IE
[
e−rT−αλ(T )v(T, SλT ,M

λ
T ;α)

]
(148)

and hence

v(0, S0, S0;α) ≥ sup
λ∈Lrc

+

IE
[
e−rT−αλ(T )v(T, SλT ,M

λ
T ;α)

]
. (149)
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For λ = λ∗ ∈ Lrc
+ we obtain

v(0, S0, S0;α) = IE
[
e−rT−αλ

∗(T )v(T, Sλ
∗

T ,Mλ∗

T ;α)
]

= IE

[
e−rT−αλ

∗(T )
(
K − S(T )e−λ

∗(T )
)+
]

(150)

and hence also

v(0, S0, S0;α) = sup
λ∈Lrc

+

IE
[
e−rT−αλ(T )v(T, SλT ,M

λ
T ;α)

]
. (151)

5.10 Basket of Barrier Options

Let’s look at the example of two up and out call options which have different
barriers but are identical otherwise:

F = (S(T )−K)+II{S(t)≤B1∀t∈[0,T ]} + (S(T )−K)+II{S(t)≤B2∀t∈[0,T ]}

for some positive strike K and positive barriers B2 > B1 > K.

F ∗ = (S(T )e−λ(T ) −K)+II{S(t)e−λ(t)≤B1∀t∈[0,T ]}

+(S(T )e−λ(T ) −K)+II{S(t)e−λ(t)≤B2∀t∈[0,T ]}

The control problem is

u∗(S0) = sup
λ∈Lrc

+

IE
[
e−rT−αλ(T )

(
(S(T )e−λ(T ) −K)+II{S(t)e−λ(t)≤B1∀t∈[0,T ]}

+(S(T )e−λ(T ) −K)+II{S(t)e−λ(t)≤B2∀t∈[0,T ]}

)]
.

Again, we solve this problem by first characterizing a minimal super-replicating
value-function v(t, x, y;α) via a partial differential equation approach and then
identify

v(0, S0, S0;α) = u∗(S0).

As in the example of the up-and-out put, the x-variable stands for the stock
price at time t and the y-variable stands for the running supremum up to time
t. Now we define v(t, x, y;α) for t ∈ [0, T ], x ≤ y ∈ [0,∞):

(1) for y > B2 both the options have knocked out, so let v = 0.

(2) for y ∈ (B1, B2] only the upper barrier option has knocked out, so we let

v(t, x, y;α) ∆= v(t, x;α), (152)

where v(t, x;α) is the minimal super-replicating value function of a single
up-and-out call option with strike K and barrier B2 as discussed in our
introductory example.

(3) for y ∈ [0, B1] define v via

(3.1) v(T, x, y;α) = 2(x−K)+

(3.2) Lv = 0 for (t, x, y) ∈ (0, T )× (0, B1)× (0, B1).

64



(3.3) v(t, 0, y;α) = 0 for t ∈ [0, T ].
(3.4) αv(t, B1, B1;α) +B1vx(t, B1, B1;α) = 0 for t ∈ [t∗, T ], where

t∗
∆= 0 ∨ inf {t : v(t, B1, B1;α) > v(t, B1;α)} ∈ [0, T ).

On this line segment we will then have v(t, B1, B1;α) ≥ v(t, B1;α).
(3.5) v(t, B1, B1;α) = v(t, B1;α) for t ∈ [0, t∗]. On this line segment we

will have αv(t, B1, B1;α)+B1vx(t, B1, B1;α) ≥ 0, because v(t, B1;α)
has that property.

Observe that vy = 0 except for the downward jumps at the two barriers. It is
obvious that v(t, x, y;α) superreplicates the payoff F . Since L{αv(t, x, y;α) +
xvx(t, x, y;α)} = 0 and αv(t, x, y;α) + xvx(t, x, y;α) ≥ 0 at all boundaries, it
follows from the maximum-principle that v(t, x, y;α) satisfies the shortselling
constraint everywhere. We need to check that our v(t, x, y;α) is the cheapest
such super-replication. We have not increased the payoff at t = T or at x = 0.
The minimality for y > B1 has been already established in the introductory
example. To guarantee super-replication and limited shortselling for y ∈ [0, B1],
we must have for all t ∈ [0, T ] at B1:

v(t, B1, B1;α) ≥ v(t, B1;α) (153)
αv(t, B1, B1;α) +B1vx(t, B1, B1;α) ≥ 0 (154)

For t above t∗, 153 is true and 154 is tight. For this line segment the minimality
follows from an argument like in the up-and-out call. For t below t∗, 154 is true
and 153 is tight, which means that no lifting has taken place, whence it is cer-
tainly minimal. This shows that v(t, x, y;α) solves the constraint valuation prob-
lem. It can be evaluated analyctically except for possibly the box [0, t∗]×(0, B1).
Inside the box it can certainly be solved numerically, because all boundary and
terminal conditions are explicitely available. To identify v(0, S0, S0;α) with
u∗(S0) we define again for a fixed λ ∈ Lrc

+ the controlled stock price process Sλ,
its running supremum Mλ and the first crossing times τ1 < τ2 by

Sλ(0) ∆= S(0) (155)

dSλ(t) ∆= Sλ(t)[rdt+ σdW (t)− dλ(t)] (156)

Mλ(t) ∆= sup
u≤t

Sλ(u) (157)

τi
∆= T ∧ inf{t ≥ 0 : Sλ(t) > Bi} (158)

Notice that Sλ(t) = S(t)e−λ(t). We define the optimal λ∗ by

λ∗(t) = max
u∈[0,t]

[logS(u)− logB(u)]+, (159)

B(u) =


B2 if u < t∗

B2 if u ≥ t∗and Mλ∗

t∗ > B1

B1 if u ≥ t∗and Mλ∗

t∗ ≤ B1

 .

Now we compute the differential

d
(
e−rt−αλ(t)v(t, Sλt ,M

λ
t ;α)

)
(160)

= e−rt−αλ(t)
{
Lvdt− (αv + Sλt vx)dλ(t) + vydM

λ
t + σSλt vxdWt

}
,
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integrate from 0 to T and take expecations:

IE
[
e−rT−αλ(T )v(T, SλT ,M

λ
T ;α)

]
− v(0, S0, S0;α)

= IE

∫ τ1

0

e−rt−αλ(t)
{
Lvdt− (αv + Sλt vx)dλ(t) + vydM

λ
t + σSλt vxdWt

}
+ IE

∫ τ2

τ1

e−rt−αλ(t)
{
Lvdt− (αv + Sλt vx)dλ(t) + vydM

λ
t + σSλt vxdWt

}
+ IE

∫ T

τ2

e−rt−αλ(t)
{
Lvdt− (αv + Sλt vx)dλ(t) + vydM

λ
t + σSλt vxdWt

}
= −IE

∫ τ1

0

e−rt−αλ(t)(αv + Sλt vx)dλ(t)

−IE
∫ τ2

τ1

e−rt−αλ(t)(αv + Sλt vx)dλ(t)

≤ 0 (161)

We conclude that for all λ ∈ Lrc
+

v(0, S0, S0;α) ≥ IE
[
e−rT−αλ(T )v(T, SλT ,M

λ
T ;α)

]
= IE

[
e−rT−αλ(T )

(
S(T )e−λ(T ) −K

)+ {
II{S(t)e−λ(t)≤B1∀ t}

+ II{S(t)e−λ(t)≤BB∀ t}
}]

(162)

and hence

v(0, S0, S0;α) ≥ sup
λ∈Lrc

+

IE
[
e−rT−αλ(T )v(T, SλT ,M

λ
T ;α)

]
. (163)

For λ = λ∗ ∈ Lrc
+ we obtain

v(0, S0, S0;α) = IE
[
e−rT−αλ

∗(T )v(T, Sλ
∗

T ,Mλ∗

T ;α)
]

(164)

= IE

[
e−rT−αλ

∗(T )
(
S(T )e−λ

∗(T ) −K
)+ {

II{Mλ∗
T ≤B1} + 1

}]
and hence also

v(0, S0, S0;α) = sup
λ∈Lrc

+

IE
[
e−rT−αλ(T )v(T, SλT ,M

λ
T ;α)

]
= u∗(S0). (165)

Here is some numerical information: We compute some values of t∗ for the
basic choice of parameters K = 1.40, B1 = 1.50, B2 = 1.52, σ = 8%, rd = 5%,
rf = 0%. Then we get

1. t∗ = 12 days

2. t∗ = 7 days when we change the strike to K = 1.45

3. t∗ = 10 days when we change the upper barrier to B2 = 1.55
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4. t∗ = 14 days when we change the upper barrier to B2 = 1.51

5. t∗ = 46 days when we change the volatility to σ = 3%

6. t∗ = 2 days when we change the volatility to σ = 20%

7. t∗ = 13 days when we change the domestic interest rate to rd = 0%

This list of examples can be carried on arbitrarily as there can be options in-
vented arbitrarily. We would like to point out though, that a solution is cer-
tainly not always so easy to find. Already, when we think of Down-and-In Puts
or Down-and-In Calls, we run into free boundary problems to get the cheapest
super-replicating value-function v. Our thesis provides at least a way to check
the answer. We leave their solution to the curiosity of future researchers.

6 Appendix

6.1 Properties of Weak Convergence

A sequence of functions {λn} in Λrc
+ is said to converge weakly to a function

λ ∈ Λrc
+ , if limn λn(t) = λ(t) for each continuity point t of λ and for t ∈ {0, T}.

Convergence at zero is redundant, because all λ ∈ Λrc
+ start at zero. We will

now list some properties and implications:

Theorem 6.1 Weak convergence is equivalent to the requirement that for each
φ ∈ C[0, T ]:

lim
n→∞

∫ T

0

φ(t) dλn(t) =
∫ T

0

φ(t) dλ(t).

Proof. Viewing Λrc
+ as a space of finite measures on [0, T ], this is part of the

Portmanteaux theorem (II.6.1 of Parthasarathy).

Theorem 6.2 Each λ ∈ Λrc
+ has only finitely many jumps of a given size and

hence at most countably many jumps.

Proof. Lemma VII.6.2 and the remark after that of Parthasarathy.

Theorem 6.3 For a ∈ [0, T ] we have

λ(a−) ≤ lim inf λn(a) ≤ lim supλn(a) ≤ λ(a) = λ(a+).

Proof. The second inequality is trivial. The first is analogous to the third. To
prove the third, first note that due to convergence at the endpoints, we only
need to consider a ∈ (0, T ). Assume B ∆= lim supλn(a) > λ(a) ∆= A and set
C

∆= A+B
2 . Since λ is right-continuous, there exists a number c ∈ (a, T ), such

that λ(t) < C for all t ∈ [a, c]. [a, c] must contain a continuity point of λ, say b.
It follows that λn(a) ≤ λn(b) for all n and consequently

lim supλn(a) ≤ lim supλn(b) = λ(b) < C < lim supλn(a),

which is a contradiction.
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Theorem 6.4 For a sequence {an}n ∈ [0, T ] converging to a we have

λ(a−) ≤ lim inf λn(an) ≤ lim supλn(an) ≤ λ(a).

Proof. Again it is sufficient to prove only the last inequality.

Case I: an ≤ a except for finitely many n. Then there exists an integer N such
that an ≤ a for all n ≥ N . Therefore, λn(an) ≤ λn(a) for all n ≥ N and
thus by theorem 6.3 lim supλn(an) ≤ lim supλn(a) ≤ λ(a).

Case II: There are infinitely many n, such that an > a. These form a subse-
quence {a′k}, converging to a from the right. Fix k. For a′k there exists an
integer N(k), such that an ≤ a′k for all n ≥ N(k). This implies λn(an) ≤
λn(a′k) for all n ≥ N(k) and thus lim supλn(an) ≤ lim supλn(a′k) ≤ λ(a′k).
This is true for all k, so taking the limit we get

lim supλn(an) ≤ lim
k
λ(a′k) ≤ λ(a+) = λ(a).

Theorem 6.5 Given a sequence {λn}n ∈ Λrc
+ , for which supn λn(T ) <∞, there

exists a λ ∈ Λrc
+ and a subsequence {λnk

}k ∈ Λrc
+ , which converges weakly to λ.

Proof. This is really a statement about relative compactness of a tight sequence
of probability measures.

Case I: λn(T ) = λn(0) for infinitely many n. Then for these n we already have
a subsequence converging weakly to λ(t) ∆= λ(0).

Case II: λn(T ) = λn(0) for only finitely many n. Since the sequence {λn(T )}n
is bounded, it must have an accumulation point λ(T ) and a subsequence
converging to λ(T ). For notational convenience, we name this subsequence
again {λn(T )}n, and assume without loss of generality that λn(T ) > λn(0)
for all n. Now we normalize to probability measures: Define

λ̃n(t)
∆=
λn(t)− λn(0)
λn(T )− λn(0)

.

Observe that λ̃n(t) ∈ Λrc
+ and additionally λ̃n(0) = 0 and λ̃n(T ) = 1. By

theorem 6.1. of Billingsley, a subsequence {λ̃nk
}k converges weakly to a

λ̃ ∈ Λrc
+ . To go back, define

λ(t) ∆= [λ(T )− λ(0)]λ̃(t) + λ(0) ∈ Λrc
+

and notice that λ and λ̃ have the same points of continuity. Finally, for
any continuity point t of λ,

λnk
(t) = [λnk

(T )− λnk
(0)]λ̃nk

(t) + λnk
(0)

converges to λ(t).

Remark: If {λn}n is a sequence of processes, then one can do this for every ω;
however, we get different subsequences for different ω.

Theorem 6.6 Λc
+ is dense in Λrc

+ under the weak topology.
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Proof. We may do mollifications to the right. Let λ ∈ Λrc
+ be given. We want

to approximate it by a sequence {fn}n in Λc
+. The idea is: at each t ∈ [0, T ]

take fn(t) to be the weighted average of λ over the interval [t, t + 1
n ]. To do

this, first extend λ beyond T , by setting λ(t) ∆= λ(T ) for t > T . Let the weight
be any nonnegative probability density function ϕ ∈ C∞(IR), whose support is
the interval [0, 1] and

∫ 1

0
ϕ(t) dt = 1. As an example one can take

ϕ(t) = Cϕ

{
e

1
(2t−1)2−1 if t ∈ [0, 1]

0 if t 6∈ [0, 1]

for an appropriate normalizing constant Cϕ. [BREZIS IV.4, p.70] Now define

fn(t)
∆=
∫ 1

0

λ(t+
y

n
)ϕ(y)dy = n

∫ t+ 1
n

t

λ(s)ϕ(n(s− t))ds.

This shows that fn is continuous, λ ≤ fn+1 ≤ fn. Furthermore the right-
continuity of λ and the bounded convergence theorem guarantee that fn(t)
converges to λ(t) for all t ∈ [0, T ]. We have created pointwise monotone conver-
gence from above. There can be other ways to do this. If we mollify to the left
instead, we get pointwise monotone convergence from below to the leftcontinous
version of λ, which is still weak convergence, unless λ jumps at T . We can also
do mollifications with moving attention spans in order to keep finitely many
points of λ fixed. See below for details.

Theorem 6.7 The Lévy distance d(µ, λ) of two controls µ and λ is defined to
be

d(µ, λ) ∆= inf{ε > 0 : λ(t− ε)− ε ≤ µ(t) ≤ λ(t+ ε) + ε for all t }.

This is a metric on Λrc
+ and a necessary and sufficient condition for λn con-

verging weakly to λ is that d(λn, λ) → 0. Moreover, Λrc
+ is separable in the Lévy

metric.

Proof. See Billingsley, Probability and Measure, 2nd ed. Problems 14.9 and
25.4.

Theorem 6.8 (Dini’s theorem) establishes the following relation between point-
wise and uniform convergence: Let fn ∈ C[0, T ], f ∈ C[0, T ], fn ↑ f pointwise
or fn ↓ f pointwise, then the convergence is uniform.

Proof. See Heuser, Lehrbuch der Analysis, 108.1. The compactness of [0, T ] is
the essential ingredient.

Theorem 6.9 (Variation ofDini’s theorem) Let λn ∈ Λrc
+ , f ∈ C[0, T ], λn → f

weakly (i.e. pointwise) , then the convergence is uniform.

Proof. f must be nondecreasing and uniformly continuous.

Case I: f(T ) = f(0). Then f(t) = f(0) for all t ∈ [0, T ]. Given ε > 0 there
exists an integer N , such that for all n ≥ N both |λn(0) − f(0)| < ε
and |λn(T ) − f(0)| < ε. Since λn is nondecreasing, we conclude that
|λn(t)− f(0)| < ε for all t and for all n ≥ N .
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Case II: f(T ) > f(0). Define δ ∆= f(T ) − f(0). Since we always have con-
vergence at the endpoints, there must be an integer N , such that for all
n ≥ N , λn(T ) − λn(0) > δ

3 > 0. To prove convergence it is sufficient to
assume that the sequence starts at N . Now we translate all the functions
into the world of distribution functions by defining

F (t) ∆=
f(t)− f(0)
f(T )− f(0)

,

Λn(t)
∆=
λn(t)− λn(0)
λn(T )− λn(0)

.

The pointwise convergence of λn to λ implies that Λn(t) → F (t) for all t.
Hence d(Λn, F ) → 0 as n→∞, where d is the Lévy distance of the space
of distribution functions. This in turn means that for all ε > 0 there is
an integer N , such that for all n ≥ N we have F (t − ε) − Λn(t) ≤ ε and
Λn(t)−F (t+ ε) ≤ ε. Introduce the modulus of continuity of a continuous
function f as

δf (ε)
∆= sup
|x−y|≤ε

|f(x)− f(y)|.

We know that for a uniformly continuous function f , δf (ε) → 0 as ε→ 0.
Now we can conclude that for all t and all n ≥ N :

F (t)− Λn(t) = F (t− ε)− Λn(t) + F (t)− F (t− ε) ≤ ε+ δf (ε)

and

Λn(t)− F (t) = F (t+ ε)− F (t) + Λn(t)− F (t+ ε) ≤ δf (ε) + ε

Together for all n ≥ N

sup
t∈[0,T ]

|F (t)− Λn(t)| ≤ δf (ε) + ε.

The right hand side goes to zero as ε ↓ 0. This proves Λn → F uniformly
and yields 1− Λn → 1− F uniformly. Since by definition

f(t) = f(T )F (t) + f(0)(1− F (t))

and
λn(t) = λn(T )Λn(t) + λn(0)(1− Λn(t))

and {λn(0)}n and {λn(T )}n are sequences of real numbers converging
to λ(0) and λ(T ) respectively, we conclude the uniform convergence of
λn → λ.

Remark. The monotonicity of the functions λn cannot be waived, since for ex-
ample the sequence of even smooth functions fn(t)

∆= nt(1− t)n converges
pointwise to the smooth function f(t) = 0, but each fn has a maximum
at the point ( 1

n+1 , (
n
n+1 )n+1), whose y-coordinate converges to 1

e > 0 as
n→∞.
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Theorem 6.10 (Mollification with moving attention spans) We are given a
λ ∈ Λrc

+ and a subset {t1, t2, . . . tN} of [0, T ], such that 0 ≤ t1 < t2 < · · · < tN ≤
T . This can be weakly approximated by a sequence {fn}n ∈ Λc

+ preserving the
values at all the tn.

Proof. For each k = 1, 2, . . . , N − 1 define λk ∈ Λrc
+ by

λk(t)
∆= λ(tk) for t ≤ tk.

λk(t)
∆= λ(t) for tk ≤ t ≤ tk+1.

λk(t)
∆= λ(tk+1) for t ≥ tk+1.

Also define
lk,n(t)

∆=
t− tk+1

tk − tk+1
(tk − tk+1 −

1
n

) + tk+1.

This implies

l′k,n(t) = 1 + 1
n(tk+1−tk) > 1, so lk,n(t) increases faster than id(t) = t.

lk,n(tk) = tk − 1
n .

lk,n(tk+1) = tk+1.

Using the weight ϕ of theorem 6.6 the desired sequence can be defined as

fn(t)
∆=
∫ 1

0

λk(lk,n(t) +
y

n
)ϕ(y) dy if t ∈ [tk, tk+1].

Interpretation: Each attention span has length 1
n and starting point lk,n(t). At

the beginning of the interval [tk, tk+1] we do mollification to the left, at the end
of it we do mollification to the right. One can instantly verify the following list
of properties of the sequence {fn}n:

fn ∈ C1[0, T ].

lim fn(t) = λ(t), if λ is continuous at t.

fn is nondecreasing.

fn(tk) = λ(tk) for all k = 1, 2, . . . , N .

Theorem 6.11 We are given a sequence {fn}n ∈ Λc
+ converging weakly to

λ ∈ Λrc
+ . We are also given a g ∈ C[0, T ]. We define

M
∆= supt∈[0,T ](g(t)− λ(t)), Mn

∆= maxt∈[0,T ](g(t)− fn(t))

m
∆= inft∈[0,T ](g(t)− λ(t)), mn

∆= mint∈[0,T ](g(t)− fn(t))

A
∆=
∫ T
0

exp[g(t)− λ(t)] dt, An
∆=
∫ T
0

exp[g(t)− fn(t)] dt

It follows that limMn = M , limmn = m and limAn = A.
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Proof. To prove limMn = M , let us first observe that for all s ∈ [0, T ] and
some t ∈ [0, T ]

Mn = max
t∈[0,T ]

(g(t)− fn(t)) = g(t)− fn(t) ≥ g(s)− fn(s)

and that similarly for all s ∈ [0, T ] and some t ∈ [0, T ]

M = sup
t∈[0,T ]

(g(t)− λ(t)) = g(t)− λ(t−) ≥ g(s)− λ(s−).

(a) lim infMn ≥ M : For all n and all s, we have Mn ≥ g(s) − fn(s). Taking
the limes inferior on both sides, we derive

lim infMn ≥ g(s)− lim sup fn(s) ≥ g(s)− λ(s),

where the last inequality follows from theorem 6.3. We can now take the
supremum over all s ∈ [0, T ] on the right hand side and conclude

lim infMn ≥ sup
s∈[0,T ]

(g(s)− λ(s)) = M.

(b) lim supMn ≤M : By the definition of supremum, there is for each n, ε > 0
a number sn such that Mn ≤ g(sn)−fn(sn)+ε. We choose a subsequence
{Mnj

}j of {Mn}n such that lim supnMn = limjMnj
. The corresponding

sequence {snj}j is bounded and must therefore have a subsequence {snjk
}k

which converges to a number s ∈ [0, T ]. Now

lim supMn = lim
j
Mnj

= lim sup
k

Mnjk
≥ g(s)− lim inf

k
fnjk

(snjk
) + ε

≤ g(s)− λ(s−) + ε ≤M + ε,

where the second last inequality follows from theorem 6.4. This works,
because any subsequence of {fn}n also converges weakly to λ. Now let
ε ↓ 0.

To prove limmn = m, let us first observe that for all s ∈ [0, T ] and some
t ∈ [0, T ]

mn = min
t∈[0,T ]

(g(t)− fn(t)) = g(t)− fn(t) ≤ g(s)− fn(s)

and that similarly for all s ∈ [0, T ] and some t ∈ [0, T ]

m = inf
t∈[0,T ]

(g(t)− λ(t)) = g(t)− λ(t) ≤ g(s)− λ(s).

(a) lim supmn ≤ m: For all n and all s, we have mn ≤ g(s) − fn(s). Taking
the limes superior on both sides, we derive

lim supmn ≤ g(s)− lim inf fn(s) ≤ g(s)− λ(s−),

where the last inequality follows from theorem 6.3. We can now take the
infimum over all s ∈ [0, T ] on the right hand side and conclude

lim supmn ≤ inf
s∈[0,T ]

(g(s)− λ(s−)) = inf
s∈[0,T ]

(g(s)− λ(s)) = m.
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(b) lim infmn ≥ m: By the definition of infimum, there is for each n, ε > 0 a
number sn such that mn ≥ g(sn)− fn(sn)− ε. We choose a subsequence
{mnj

}j of {mn}n such that lim infnmn = limjmnj
. The corresponding

sequence {snj}j is bounded and must therefore have a subsequence {snjk
}k

which converges to a number s ∈ [0, T ]. Now

lim infmn = lim
j
mnj

= lim inf
k

mnjk
≥ g(s)− lim sup

k
fnjk

(snjk
)− ε

≥ g(s)− λ(s)− ε ≥ m− ε,

where the second last inequality follows from theorem 6.4. This works,
because any subsequence of {fn}n also converges weakly to λ. Now let
ε ↓ 0.

To prove limAn = A, first note that fn(t) converges to λ(t) for Lebesgue-a.e. t.
Consequently∫ T

0

lim
n→∞

exp[g(t)− fn(t)] dt =
∫ T

0

exp[g(t)− λ(t)] dt.

Fatou’s lemma implies
lim inf
n→∞

An ≥ A.

Now select a subsequence {Ank
}k of {An}n, such that lim supnAn = limk Ank

.
Since exp[g(t)−fn(t)] ≤ exp[g(t)], which is an integrable function, the Dominted
Convergence Theorem yields

lim sup
n→∞

An = lim
k→∞

∫ T

0

exp[g(t)− fnk
(t)] dt

=
∫ T

0

lim
k→∞

exp[g(t)− fnk
(t)] dt

=
∫ T

0

exp[g(t)− λ(t)] dt.

6.2 The Maximum Principle

The Maximum Principle (see e.g. KARATZAS and SHREVE, 1989) works
like this: Suppose X is a diffusion of the form dXs = ads+ σdWs with second
order differential operator Au(t, x) ∆= aux(t, x) + 1

2σ
2uxx(t, x), g(t, x) ≥ 0 a

potential, u(t, x) a function satisfying u(T, x) ≥ 0 and −ut+ru = Au+g. Then
u(t, x) ≥ 0 for all t ≤ T .
For a quick proof, use Itô’s rule to compute the differential

de−rsu(s,X(s)) = e−rs[−ruds+ usds+Auds+ σuxdWs]
= e−rs[−gds+ σuxdWs]

Now integrate between t and T and take expectations conditioned on X(t) = x
to get

IEt,x[e−rTu(T,X(T ))] = e−rtu(t, x) + IEt,x
∫ T

t

e−rs(−g(s,X(s)))ds,
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which in turn implies

u(t, x) = ert

{
IEt,x[e−rTu(T,X(T ))] + IEt,x

∫ T

t

e−rsg(s,X(s))ds

}
.

The assumed nonnegativity of both u(T, x) and g shows thus, that u(t, x) is
nonnegative as well. Throuout we will use this for the case g = 0.

6.3 Upper and Lower Semicontinuity

Let F be a real-valued function defined on some metric space (C, d). F is defined
to be upper semicontinuous, if

lim sup
n→∞

F (xn) ≤ F (x), whenever lim
n→∞

d(xn, x) = 0

and lower semicontinuous, if

lim inf
n→∞

F (xn) ≥ F (x), whenever lim
n→∞

d(xn, x) = 0.

Theorem 6.12 If F is both lower semicontinuous and upper semicontinuous,
then F is continuous.

Theorem 6.13 F is lower semicontinuous if and only if for each real number
a the set

{x : F (x) ≤ a}
is closed or equivalently the set

{x : F (x) > a}

is open.

Theorem 6.14 F is upper semicontinuous if and only if for each real number
a the set

{x : F (x) ≥ a}
is closed or equivalently the set

{x : F (x) < a}

is open.

Theorem 6.15 F is upper semicontinuous and bounded above if and only if
there exists a sequence {Fn}n of continuous functions such that Fn ↓ F .
F is lower semicontinuous and bounded below if and only if there exists a se-
quence {Fn}n of continuous functions such that Fn ↑ F .

Proof. See [BERTSEKAS and SHREVE], lemma 7.14.

Warning. If (C0, d) is a dense metric subspace of (C, d), F agrees with G
on C0 and both F and G are upper semicontinuous, then they need not neces-
sarily agree on C. Take for instance, C = IR, C0 = IQ, y ∈ IR \ IQ, F = 0 and
G(x) = II{x=y}.
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6.4 Excursion on Singular Stochastic Control

Working on Singular Stochastic Control problems may be quite tedious for the
beginner in this area. To understand some of the relevant issues we present this
easily accessable example. Certainly, in the literature a lot more general prob-
lems have been discussed and solved. This excursion is more of an instructional
value than to generalize.

The Problem. Let {W (t)}t≥0 be a Standard Brownian Motion, x ∈ IR a
starting point, α a positive real number. These are given and not to be al-
tered. Let {ξ(t)}t≥0 a nonnegative nondecreasing control process starting at
zero, adapted to the filtration generated by W (t). These are the variables
among which an optimal will have to be chosen. For each state process

X(t) ∆= x+W (t)− ξ(t)

we are assigned a cost

C
∆=
∫ ∞

0

e−αtX2
t dt.

Define the minimal expected cost

v(x) ∆= min
ξ
IE

∫ ∞

0

e−αtX2
t dt.

The problem is

(a) to find a control process ξ∗, for which the above minimum is attained and

(b) to identify the function v(x).

Interestingly, (a) and (b) are somehow interrelated. To interpret the problem,
at each time a cost-minimizing controller can push down the Brownian path.
Ideally one would like to keep the path at zero, but unfortunately we are not
allowed to push up, if W (t) takes large negative values. We have to find the
ideal way of pushing down but not pushing down too much.
The Solution. We start off with some elementary observations about v(x):

(1) v(x) ≥ 0.

(2) v(x) ≤ x2

α + 1
α2 , because if we don’t control at all the expected cost becomes∫∞

0
e−αtIE[x+W 2

t ] dt =
∫∞
0
e−αt[x2 + t] dt = x2

α + 1
α2 .

(3) v(x+ h) ≤ v(x) for all h ≥ 0, because jumping back to x immediately and
then optimize is at most optimal.

(4) v is convex: Let ξ and η be the minimizing processes for the starting points
x and y respectively, and let p, q ∈ [0, 1] such that p + q = 1. At this
point we are not concerned about the existence of such optimal control
processes. The control process pξ + qη is at most optimal for the starting
point px + qy. Moreover, the linearity of the state process equation and
the convexity of the function x 7→ x2 yield

v(px+ qy) ≤ IE

∫ ∞

0

e−αt[px+ qy +Wt − (pξ + qη)]2 dt
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= IE

∫ ∞

0

e−αt[p(x+Wt − ξ) + q(y +Wt − η)]2 dt

≤ pIE

∫ ∞

0

e−αt(x+Wt − ξ)2 dt+ qIE

∫ ∞

0

e−αt(y +Wt − η)2 dt

= pv(x) + qv(y).

(5) Since v is defined and finite for all x, (4) implies that v is continuous.

Now to develop an idea how v and ξ∗ should look like, we do a dynamic program-
ming argument similar to the one presented in section V.7. of [ROGERS and
WILLIAMS]. Getting the right idea is one thing. Proving it is another thing.
So we assume for a moment that we can only push down at a rate ut ∈ [0,K],
i.e.

dXt = dWt + ut dt.

This is actually not the case, because we explicitly allow the control processes
to have jumps. We now split the controlling over the interval [0,∞) into two
parts: push at a constant rate u over the interval [0, h] and then optimize over
[h,∞). We think of h as a small number.

v(x) = min
ξ
IE

∫ ∞

0

e−αt(x+Wt − ξt)2 dt

≤ IE

[∫ h

0

e−αt(x− ut+Wt)2 dt

+ e−αh
∫ ∞

0

e−αt(x− uh+Wh +Wt − ξt)2 dt
]

=
∫ h

0

e−αt((x− ut)2 + t) dt+ e−αhIEv(x− uh+Wh)

= hx2 + o(h) + (1− αh+ o(h))IE[v(x) + v′(x)(−uh+Wh)

+
1
2
v′′(x)(−uh+Wh)2 + o(h)]

= hx2 + o(h) + v(x) + h{−αv(x)− v′(x)u+
1
2
v′′(x)}+ o(h).

It follows that
h(x2 − αv(x)− v′(x)u+

1
2
v′′(x)) ≥ 0.

This suggests that either

v′ = 0 and x2 − αv(x) +
1
2
v′′(x) ≥ 0, u active

or
v′ < 0 and x2 − αv(x) +

1
2
v′′(x) = 0, u inactive.

Recall that v′ > 0 is not possible. We will now setup a list of desired properties
of solution-candidates v and ξ∗, check whether there exists a pair (v, ξ∗) that
satisfies all the properties, and then do something that’s called a verification
theorem, where we will check if the solution-candidate actually solves the control

76



problem.
Determine a function v(x), a numberB and a nonnegative nondecreasing process
ξ∗(t) that satisfy the
Solution-Candidate Wish-List

(1) −αv + 1
2v

′′ = −x2 ∀ x ≤ B

(2) −αv + 1
2v

′′ ≥ −x2 ∀ x > B

(3) v′ ≤ 0 ∀ x ≤ B

(4) v′ = 0 ∀ x > B

(5) 0 ≤ v(x) ≤ x2

α + 1
α2 ∀ x

(6) v, v′, v′′ are continuous for all x.

(7) ξ∗(t) = 0, whenever x+W (t) ≤ B.

(8) ξ∗(t) pushes x+W (t) back to B, whenever x+W (t) > B.

Find the Solution-Candidate
We first look at the non-homogeneous ordinary differential equation

−αv +
1
2
v′′ = −x2.

The corresponding homogeneous ordinary differential equation

−αv +
1
2
v′′ = 0

has the general solution

v(x) = A1e
−
√

2αx +A2e
+
√

2αx.

A particular solution to the non-homogeneous ordinary differential equation can
be found be assuming that v(x) = Ax2 +Bx+ C. We derive v′(x) = 2Ax+B
and v′′(x) = 2A, whence

−x2 = −αv(x) +
1
2
v′′(x) = −αAx2 − αBx− αC +A

and consequently A = 1
α , B = 0 and C = 1

α2 . Now we can write down the
general solution to the non-homogeneous equation

v(x) = A1e
−
√

2αx +A2e
+
√

2αx +
x2

α
+

1
α2
.

We need this equation to hold for all x ≤ B. But as x→ −∞, (5) can only hold
if A1 = 0. To incorporate B, v must be of the form

v(x) =
{
A2e

√
2αx + x2

α + 1
α2 if x ≤ B,

v(B) if x ≥ B.

We derive
v′(x) = [A2

√
2αe

√
2αx +

2x
α

]II{x≤B},
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v′′(x) = [A22αe
√

2αx +
2
α

]II{x≤B}.

The continuity of v′′ implies that v′′(B) = 0 and thus A2 = − e−
√

2αB

α2 yielding

v′(x) = [−
√

2α
α2

e
√

2α(x−B) +
2x
α

]II{x≤B}.

The continuity of v′ implies that v′(B) = 0 and thus B = 1√
2α

. Using the
continuity of v we can propose

v(x) =

{
1
α2 [1 + αx2 − e

√
2αx−1] if x ≤ 1√

2α
,

1
2α2 if x ≥ 1√

2α
.

v′(x) =

{
1
α2 [2αx−

√
2αe

√
2αx−1] if x ≤ 1√

2α
,

0 if x ≥ 1√
2α
.

v′′(x) =

{
1
α2 [2α− 2αe

√
2αx−1] if x ≤ 1√

2α
,

0 if x ≥ 1√
2α
.

As expected, we observe that v′′(x) ≥ 0. Therefore v′ is nondecreasing. Since
v′( 1√

2α
) = 0, v′(x) ≤ 0 for all x. This in turn implies that v must be nonin-

creasing (as expected). Since v( 1√
2α

) = 1
2α2 , we deduce that v(x) ≥ 1

2α2 for

all x. Of course, it is obvious that v(x) ≤ x2

α + 1
α2 , i.e. (5) holds. Finally, if

x ≥ 1√
2α

, then x2 ≥ 1
2α and thus −αv(x) + 1

2v
′′(x) = −α 1

2α2 = − 1
2α ≥ −x2.

As a result we can state that properties (1) to (5) of our wish-list are satisfied.
Additionally we find v(0) = 1

α2 [1− 1
e ] and

lim
x→∞

v(x) =
1

2α2
, lim

x→∞

v(x)
x2

=
1
α
.

A formula for ξ∗

We want a nonnegative nondecreasing and adapted process ξ∗ such thatX∗(t) ∆=
x+W (t)− ξ∗(t) ≤ 1√

2α
. The answer is

ξ∗(t) = sup
0≤s≤t

[x+W (s)− 1√
2α

]+.

ξ∗ is obviously nonnegative nondecreasing and adapted. The nonnegativity
implies X∗(t) ≤ x +W (t). This means that if already x +W (t0) ≤ 1√

2α
, then

X∗(t0) ≤ 1√
2α

. On the other hand, if x+W (t0) > 1√
2α

, then x+W (t0)− 1√
2α

=
[x+W (t0)− 1√

2α
]+ ≤ ξ∗(t0). Therefore X∗(t0) = x+W (t0)− ξ∗(t0) ≤ 1√

2α
as

desired. We note that ξ∗ is a process with continuous paths, and it only grows
at time t if x+W (t) is above 1√

2α
. The oscillation properties of Brownian paths

show us that furthermore the paths of ξ∗ are singularly continuous. Recall that
a real function f(x) is called singular, if f ′(x) = 0 for almost every x. It is this
singularity which gives this control problem its name.
This concludes our wish-list: (1) to (7) hold. We are thus given an explicit
solution-candidate for our control problem. The remaining task is to check if
this candidate actually does solve the control problem.
Verification Theorem

Given the explicit (v, ξ∗) we have to show two things:
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(1) v(x) = minξ IE
∫∞
0
e−αtX2

t dt.

(2) The minimum is attained at ξ∗.

To do this, let ξ be any nondecreasing process starting at zero, X(t) ∆= x +
W (t)− ξ(t). v is twice differentiable, whence Itô’s rule implies

de−αtv(X(t)) = e−αt[−αvdt+
1
2
v′′dt+ v′dWt − v′dξt]

= e−αtII{Xt≤ 1√
2α
}(−X2(t))dt+ e−αtII{Xt>

1√
2α
}(−X2(t) +N(t))dt

+e−αtv′(X(t))dWt − e−αtv′(X(t))dξt

for some non-negative N(t). Integrating from 0 to T and taking expectations
yields

IE[e−αT v(X(T ))] = v(x)− IE

∫ T

0

e−αtX2(t) dt

+IE
∫ T

0

e−αtII{Xt>
1√
2α
}N(t) dt− IE

∫ T

0

e−αtv′(X(t))dξ(t).

The Itô integral vanished, because e−αt ∈ [0, 1] and 0 ≥ v′(x) ≥ 1
α2 [2αx−

√
2α].

The process N(t) is nonnegative and so

IE[e−αT v(X(T ))] ≥ v(x)− IE

∫ T

0

e−αtX2(t) dt− IE

∫ T

0

e−αtv′(X(t))dξ(t)

≥ v(x)− IE

∫ T

0

e−αtX2(t) dt.

The last step used the facts that v′ is nonpositive and dξ is nonnegative (because
ξ is nondecreasing). We obtain

v(x) ≤ IE

∫ T

0

e−αtX2(t) dt+ IE[e−αT v(X(T ))].

Ideally we would like the second term to vanish as T gets large. We can do
this in the following way: First we can convince ourselves that we can restrict
our attention to those controls for which IE

∫∞
0
e−αtX2(t) dt is finite. This is

possible, because doing nothing (i.e. ξ = 0) results in a finite expected cost.
Doing nothing, however, may still be suboptimal: we will get no larger expected
cost for the optimal ξ. Using property (5) of v we see that∫ ∞

0

IEe−αtv(X(t)) dt ≤
∫ ∞

0

IEe−αt
[
X2(t)
α

+
1
α2

]
dt <∞.

This implies for the positive integrand IEe−αtv(X(t))

lim inf
t→∞

IEe−αtv(X(t)) = 0.

This enables us to choose a sequence tn ↑ ∞, such that

lim
n→∞

IEe−αtnv(X(tn)) = 0.
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Using this sequence we conclude

v(x) ≤ IE

∫ ∞

0

e−αtX2(t) dt

for all controls ξ that have a chance to minimize the expected cost. It remains
to prove that for the candidate ξ∗ this inequality can’t be strict. We start with
the same equality that we have derived before, which must also hold for ξ∗:

IE[e−αT v(X∗(T ))] = v(x)− IE

∫ T

0

e−αtX∗2(t) dt

+IE
∫ T

0

e−αtII{X∗
t >

1√
2α
}N(t) dt− IE

∫ T

0

e−αtv′(X∗(t))dξ∗(t).

Here we wrote X∗(t) for x+W (t)−ξ∗(t). As for the middle integral, recall that
ξ∗ is designed in such a way that the event {X∗

t >
1√
2α
} never occurs. As for

the last integral we have observed that for X∗(t) < 1√
2α

the control ξ∗(t) does
not grow, whence dξ∗(t) = 0, and for X∗(t) = 1√

2α
we have v′(X∗(t)) = 0. We

are left with

IE[e−αT v(X∗(T ))] = v(x)− IE

∫ T

0

e−αtX∗2(t) dt.

All possible sources of non-strict inequalities have dissappeared. We can now
let T go to infinity in a similar way as before and arrive at the desired result

v(x) = IE

∫ ∞

0

e−αtX∗2(t) dt,

which proves that our solution-candidate does in fact solve the control problem.
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CVITANIĆ, J. and KARATZAS, I. (1993). Hedging Contingent Claims with
Constrained Portfolios. Ann. Appl. Probab. 3 652-681.
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