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Abstract

This paper aims to unify exotic option closed formulas by gener-
alizing a large class of existing formulas and by setting a framework
that allows for further generalizations. The formula presented cov-
ers options from the plain vanilla to most, if not all, mountain range
exotic options and is developed in a multi-asset, multi-currency Black-
Scholes model with time dependent parameters. The general formula
not only covers existing cases but also enables the combination of di-
verse features from different types of exotic options. It also creates
implicitly a language to describe payoffs that can be used in indus-
trial applications to decouple the functions of payoff definition from
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pricing functions. Examples of several exotic options are presented,
benchmarking the closed formulas’ performance against Monte Carlo
simulations. Results show a consistent over performance of the closed
formula reducing calculation time by double digit factors.

Key words: exotic options, mountain range, discrete lookback, closed for-
mula, payoff language, multi-asset multi-currency model
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1 Introduction

The pricing of exotic options, defined in most references as every option
type apart from the European and American vanilla options, is performed
either by using a closed formula or by relying on a numerical method to
evaluate the integral the pricing function involves. Whenever available, a
closed formula is more precise and requires less computational effort. This
is the reasoning behind our search for general closed formulas that unify
exotic option pricing.

The closed formulas for pricing exotic options have mainly been devel-
oped to price options whose payoffs exhibit one, and only one, very specific
feature, and they assume an elementary market setup. However, the in-
dustry requirements go well beyond these simplifications. Exotic options
underlying assets spread across several currency zones, and exotic options
payoff profiles include features from multiple exotic option types.

This need to account for multiple features in a computationally simple
process calls for a unification of the existing closed exotic option pricing
formulas. Thus, instead of proceeding to develop formulas for specific option
types, we propose a general approach that is able to accommodate several
of the features seen in most exotics. Hence, we produce a formula for a
generic payoff, covering thus all exotic options whose features are included
in it. The market setting underlying the formula is also able to accommodate
very diverse market setups, covering as many currency zones as needed.

Finally, the general formula allows the development of payoff languages.
Payoff languages are extremely useful in industrial pricing applications as
they enable the decoupling the payoff definition process from the pricing
routines. Thus, as long as the payoff only uses the features covered by this
general formula, the development of a new payoff profile does not necessi-
tate the development of a new pricing routine. This means that industry
agents can freely combine the desired features, while using the same pricing
routines.

This paper is divided into four sections. This first section covers the mo-
tivation for the paper and the literature review. The second section develops
the model, the payoff of a generic claim and its pricing formula. Section
three then discusses the applications, including performance matters, and
provides examples and the final section concludes.

1.1 Literature Review

Literature on exotic options is vast and dates back to the late 1970s. It
is not our intention to give a complete chronology of the works related to
this field but just to refer some landmark contributions for each of the main
threads of research. Compilations of exotic options descriptions and pricing
formulas may be found in Nelken (1995), Zhang (1997), Haug (1998), and
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Hakala and Wystup (2002).
According to our exotic option definition above, there are three threads

of research in exotics, the first of which deals with options on multiple under-
lyings. The distinctive characteristic of these options is their high sensitivity
to correlations. The landmark closed formulas were Margrabe (1978) - ex-
change options, Stulz (1982) maximum/minimum of two assets and Johnson
(1987) for several assets. One other thread deals with path-dependent op-
tions, namely lookback and barrier, which this paper only includes in their
discrete version. The main contributions on this thread are Rubinstein and
Reiner (1991) for barrier options and Goldman et al.(1979) and Conze and
Viswanathan (1991) for lookbacks. Further developments on barrier op-
tions were due to work by Heynen and Kat (1994), Carr (1995) and Wystup
(2003). For a remarkable description of the barrier option problem see Björk
(1998) whose general approach covers a wide class of payoffs. The last thread
deals with Asian option and basket options. Their distinctive characteristic
is the need to handle sums of geometric Brownian motions. Initial contribu-
tions for simpler geometric average problems are from Vorst (1992), and a
major development for arithmetic average problems is due to Večeř (2001).
The present paper extends previous work on this subject by Veiga (2004).

2 Formula Development

2.1 Model Description

The model on which we develop a closed formula can be classified as a
multivariate Black–Scholes model. It is a multi-asset model in which all
assets are tradable including for example stocks, currencies, precious metals
and indexes composed by these.

We assume the existence of n assets Ai, and the respective bank accounts
Bi where asset Ai may be deposited, with i = 1, . . . , n. Each of the accounts
yields a return, in units of the same asset, at a continuosly compounded rate
of ri. Such a rate may be interpreted as an interest rate of a currency or
as a repo rate1 of a stock. Although it is also common also to use this rate
to represent dividend payments for individual stocks, we advise against it
since dividend payments are typically not payed continuously and are not
proportional to the asset price, see [22] for details. Each bank account thus
follows the dynamics

dBi(t)/Bi(t) = ri(t)dt. (1)

We furthermore assume the existence of one, and only one, price pro-
cess for each asset Ai allowing its expression in units of another asset Aj .
This structure is usually referred to as a tree structure. Though here the

1rate paid on a repurchase agreement or stock lending contract.
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definition of the root (asset) of the tree is not critical, any asset can play
that role, what is critical is to have one path, and only one path, to express
the price of one asset in terms of any other. Such a structure excludes tri-
angular relationships as for example EUR/USD, USD/JPY and EUR/JPY
foreign exchange pairs. We exclude these relationships because they impose
restrictions on the volatilities and correlations between the assets, see [10]
for details.

Hence, we assume the existence of price processes Sij , that is the price
of one unit of Ai expressed in units of Aj , with the dynamics following the
stochastic differential equation (SDE)

dSij(t)/Sij(t) = µij(t)dt+ σij(t)dWi(t), (2)

where Wi(t) is a Brownian motion under the real world measure P , µij ∈ R,
σij ∈ R+. Furthermore, Wij(t) is correlated with the Brownian motions
that drive the other asset prices. Let Wkl(t) be one such process, ρij,kl(t)
its correlation with Wij(t), and ςij,kl(t) = ρij,kl(t)σij(t)σkl(t) the respective
covariance.

Although other setups are also plausible, we choose this one for three
reasons: it is general enough to accommodate most exotic options we have
encountered, the formulas generated are still manageable, and the volatil-
ities and correlations can be freely specified. Figure 1 illustrates a model
setup that would underlie the valuation of a typical structured product that
depends on several equity indexes spread across the world.

Figure 1: Example of market setup. The abbreviations refer to the follow-
ing: USD to United States dollars, EUR to the euro currency, JPY to the
Japanese yen, XAU to the gold ounce, SPX to the S&P500 index, SX5E to
the DJ Eurostoxx 50 index, and NKY to the Nikkei index.

It shows a market with seven assets and six prices. It includes the
currencies of the three main monetary zones and the most popular indexes
of each. The currency pairs S21 and S13 are the most liquid and are defined
according to market standards, EUR/USD and USD/JPY respectively. The
prices of the baskets of stocks that compose each of the equity indexes A5,
A6 and A7 are naturally expressed in terms of their respective currencies.

It is well known that a market with the same number of random sources
driven by (correlated) Brownian motions Wij(t) as of tradable assets Ai is

5



complete and arbitrage free. See Björk [1] or Shreve [18] for details. There-
fore, there exists a unique martingale measure Qk, equivalent to measure
P . In such a measure Qk, all portfolios expressed in terms of units of the
numéraire portfolio Bk(t) are martingales. In this model, the transforma-
tion from measure P to Qk is found by solving a simple system of equations
in which the matrix is triangular. This system yields a transformation of
the type

dWij(t) = dWij,k(t) −
1

σij(t)

(

ri(t) + µij(t) − rj(t) +
n
∑

h=1

λjh
ςij,ih(t)

)

dt.

(3)
where n is the number of price conversions needed to express the asset in
which the price of Ai is expressed, i.e. Aj , to Ak; λjh

accounts for the
direction of each of the prices, which may be natural (λjh

= 1) or inverse
(λjh

= −1). A price expressed in the natural direction, with respect to the
price path from Aj to Ak, is one that multiplies the previous quantity to
yield the next. Conversely, a price expressed in the inverse direction is one
that divides. Finally, ih are the indexes of the assets that stand between
assets Aj and Ak. The indexes are unique as the tree structure implies that
there is one, and only one, shortest conversion path connecting the assets.

Applying the transformation to Sij(t) in equation (2) we get the dynam-
ics of Sij(t) under the measure Qk as

dSij(t)/Sij(t) =

(

rj(t) − ri(t) −
n
∑

h=1

λjh
ςij,ih(t)

)

dt+ σij(t)dWij,k(t). (4)

In the example above, if the EUR bank account is chosen as numéraire,
the dynamics of the index NKY are

dS73(t)/S73(t) = (r3(t) − r7(t) − (−ς73,13(t) − ς73,21(t))) dt

+ σ73(t)dW73,2(t). (5)

Now that we have all dynamics of all prices S under one arbitrary mar-
tingale measure Qk, the relevant information concerning the location of Ai in
the tree structure is condensed in the summation

∑n
h=1 λjh

ςij,ih(t). There-
fore, we can suppress the letter in the subscript of S, σ, ρ and ς that tracks
the asset in which the price is expressed. Thus, ij will be only i from now on.
Furthermore, we will also assign the symbol di(t) to the drift term function,
yielding (4) in a more economic form as

dSi(t)/Si(t) = di(t)dt+ σi(t)dWik(t), (6)

where we also removed the comma on the diffusion term because, from now
on, we shall only need one symbol to refer to an asset.
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2.2 Abstract Assets

Apart from the physical assets Ai, we assume the existence of a new set of
abstract assets Ai. The conditions these assets need to fulfill are that (i)
their price is a function of the prices Si, and (ii) their price follows, under
any given measure Qk, a dynamic of the type

dSi(t)/Si(t) = dSi
(t)dt+ σSi

(t)dWSik(t). (7)

Thus, we define Si as the most general case we can conceive

Si(t) =
m
∏

j=1

(

Sij ,tj (t)
)αj , (8)

where Sij ,tj (t) is the process Sij (t) frozen at time tj , i.e., Sij (t∧ tj) and ij is
an index of an asset. Hence, the process Sij ,tj (t) has zero drift and diffusion
after time tj , and we write its dynamics as

dSij ,tj (t)/Sij ,tj (t) = δij (t)dt+ θij (t)dWik(t), (9)

with δij (t) = dij (t) and θij (t) = σij (t) for t < tj and both equal to zero
otherwise. The covariance is also redefined as ζijih(t) = θij (t)θih(t)ρij ,ih(t).
Without loss of generality we assume t1 < t2 < . . . < tn.

This form exploits the geometric nature of the asset prices Si, and that
linear combinations of normally distributed random variables are still nor-
mal.

To characterize the asset Ai and its price Si we need to determine the
following quantities: the correlation with any other asset ζSik(t), the drift
term dSi

(t), the volatility term σSi
(t), and the rate of return of deposits of

Ai, i.e., rAi(t).
Using the Itô formula we obtain the dynamic of Si as

dSi(t)/Si(t) =

m
∑

j=1

αj

(

δij (t) −
θ2
ij

(t)

2
+

m
∑

h=1

αhζijih(t)

2

)

dt (10)

+

m
∑

j=1

αjθij (t)dWijk(t).

We thus have dSi
and σ2

Si
as

σ2
Si

(t) =
m
∑

j=1

m
∑

h=1

αjαhζijih(t) =
m
∑

j=1

m
∑

h=1

αjαhςij ,ih(t)I{t<tj ,t<th}, (11)

dSi
(t) =

m
∑

j=1

αj

(

δij (t) −
θ2
ij

(t)

2

)

+
σ2

Si
(t)

2
, (12)
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with σ2
Si

(t) the variance of a sum of correlated normals.
As to the covariance of Si with any other price Sj , we make use of

the relationship ζSiSj
(t)dt = σSi

(t)σSj
(t)dWSik(t)dWSjk(t) and, using (10),

conclude that

ζSiSj
(t) =

mi
∑

a=1

mj
∑

b=1

αaαbζiaib(t) =

mi
∑

a=1

mj
∑

b=1

αaαbςa,b(t)I{t<ta,t<tb}, (13)

and, in the special case where one of the abstract assets is equal to an asset
price Sx, we also have

ζSix(t) =
m
∑

j=1

αjζijx(t) =

m
∑

j=1

αjςj,x(t)I{t<tj}. (14)

The return rate rSi
of the bank account Bi associated with asset Ai can

be easily calculated using the fact that the dynamics of Bi expressed in terms
of Bk, under the measure Qk, is a martingale. A simple application of the
Itô formula yields

d

(

BiSi

Bk

)

(t) =

(

BiSi

Bk

)

(t) ((rSi
(t) + dSi

(t) − rk(t)) dt+ σSi
(t)dWSik(t)) .

(15)
Consequently,

rSi
(t) = rk(t) − dSi

(t). (16)

We can now even write the SDE of the price process Sl under the martin-
gale measure associated with Si, QSi

, just adding one extra price conversion
to the path from Aj to Ak, described in section 2.1, yielding

dSl(t)/Sl(t) = (dl(t) + ζSil(t)) dt+ σl(t)dWlSi
(t), (17)

and consequently

dSl(t)/Sl(t) = (dSl
(t) + ζSiSl

(t)) dt+ σSl
(t)dWlSi

(t). (18)

Before we conclude this subsection, we would like to make a remark
on how these abstract assets fit the arbitrage theory framework. As in
Björk [1], Chapter 24, arbitrage theory requires that the numéraire of a
given model definition must be a traded asset. Clearly these abstract assets
are not traded per se, and they cannot be replicated by any self-financing
portfolio. However, we were able to find the QSi

measure in which all the
portfolios ϑ of the above assets and abstract assets, expressed in units of
Bk, are martingales when translated to units of Bi, by ϑ(t)Bk(t)

Bi(t)Si(t)
,

8



2.3 Generic Contract

Now we need an abstract definition of a contract, or a claim, that should
include as many features and existing contracts as possible. Hence, we
propose the following payoff definition expressed in terms of asset Ak

Φk =
n
∑

i=1

ciSIi,ti(Ti)ICi
, (19)

with ci ∈ R, SIi,ti(Ti) as the price of an abstract asset AIi
expressed in terms

of Ak, observed at time ti, to be settled at time Ti, and ICi
the indicator

function of the set Ci that will be defined in section 2.4. For the payoff to
be adapted, we need ti ≤ Ti. We note that SIi,ti(t) is actually a stopped
process as above and, likewise, dSIi,ti

(t), σSIi,ti
(t) and ζSIi,ti

x(t) are zero for
t > ti. Likewise, the return rate rSIi,ti

(t) = rk(t) for t > ti.
To be able to price this claim, we assume the existence of a filtered

probability space (Ω,F , {Ft}t≥0 , P ) and that all prices Si are adapted. The
arbitrage free price of such a contract is, as usual, the discounted expected
payoff under the unique equivalent martingale measure Qk, thus

V (t0) =
n
∑

i=1

ciBk(t0)E
Qk

t0

[

SIi,ti(Ti)ICi

Bk(Ti)

]

, (20)

where EQk

t0
is the conditional expectation, under the measure Qk, condi-

tioned on the σ-algebra Ft0 . We also use the fact that the conditional
expectation is a linear operator to interchange it with the summation.

For each term of the summation we may write, with V (t0) =
∑n

i=1 vi(t0),

vi(t0)

Bk(t0)
= EQk

t0

[

ci
SIi,ti(Ti)ICi

Bk(Ti)

]

, (21)

which is a martingale by definition of Qk.
We now translate the price and the payoff expressed in units of Bk in

units of BIi,ti(Ti). These new quantities are martingales under the measure
QSIi,ti

, and therefore

vi(t0)

Bk(t0)

Bk(t0)

SIi,ti(t0)BIi,ti(t0)
= E

QSIi,ti
t0

[

ci
SIi,ti(Ti)ICi

Bk(Ti)

Bk(Ti)

SIi,ti(Ti)BIi,ti(Ti)

]

.

(22)
This step can be view as a change of numéraire from Bk to BIi,ti as in
Geman et al. [7]. However, despite the similarity, this is not a standard
change of numéraire because neither SIi,ti(Ti) is the price of a traded asset
nor is BIi,ti(Ti) a portfolio of tradable assets. Similar measures may be found
in Carr [4] and Björk and Landén [2]2.

2The authors wish to thank Prof. Tomas Björk for his advice on this issue.
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Canceling terms and rearranging we get

V (t0) =
n
∑

i=1

ciSIi,ti(t0)BIi,ti(t0)E
QSIi,ti
t0

[

ICi

BIi,ti(Ti)

]

. (23)

Additionally, we know that Bi is a deterministic processes under the
measure QSIi,ti

and can thus be taken out of the expectation, yielding

V (t0) =

n
∑

i=1

ciSIi,ti(t0)
BIi,ti(t0)

BIi,ti(Ti)
P

QSIi,ti
t0

(Ci)

=

n
∑

i=1

ciSIi,ti(t0) exp

{

−

∫ Ti

t0

rSIi,ti
(u)du

}

P
QSIi,ti
t0

(Ci) , (24)

where P
QSIi,ti
t0

(Ci) is the probability of the set Ci, under the risk neutral
measure QSIi,ti

, and considering the prices at time t0.
However, in general the expression on the right hand side of (24) does

not lead to a closed formula and may require numerical integration. Hence,
we need to impose some restrictions on the shape of the set Ci to make

sure the probability terms P
QSIi,ti
t0

(Ci) can be evaluated using a closed form
expression. More specifically, we will constrain the set Ci in a way that guar-

antees that P
QSIi,ti
t0

(Ci) can be evaluated by a sum of multivariate normal
cumulative distribution functions.

2.4 Set Definition and its Probability

Before we state the main result of this section we need the following:

Proposition 2.1. The processes log(Sl,s(t)), with l iterating over all asset
prices in the model, and s ≥ 0, are jointly normally distributed for any time
t > 0.

Proof. Standard stochastic calculus, applied to equation (17), yields its so-
lution as

Sl,s(t) = Sl(t0 ∧ s) exp

{∫ t∧s

t0∧s

(

dl(u) + ζSil(u) −
σ2

l (u)

2

)

du

+

∫ t∧s

t0∧s

σl(u)dWlSi
(u)

}

. (25)

From this solution, it follows immediately that log(Sl,s(t)) is normally
distributed with mean µ and variance ψ as

µ = log(Sl(t0 ∧ s)) +

∫ t∧s

t0∧s

(

dl(u) + ζSil(u) −
σ2

l (u)

2

)

du,

ψ =

∫ t∧s

t0∧s

σ2
l (t)du.

10



Furthermore, any linear combination of the logs of frozen processes is still
normally distributed. Without loss of generality, let 0 = s0 ≤ s1 ≤ . . . ≤ sm.
Then

m
∑

g=1

αg log(Slg ,sg
(t)) =

m
∑

g=1

αgµg +
m
∑

g=1

∫ t∧sg

t0∧sg

αgσlg(u)dWlgSi
(u) (26)

is normally distributed, with mean
∑m

g=1 αgµg and variance

m
∑

g=1

∫ t∧sg

t∧sg−1

m
∑

a=g

m
∑

b=g

αaαbςla,lb(u) du. (27)

By theorem 9.5.13 of [6], this is enough to prove that any set of random
variables log(Sl,s(t)) is jointly normally distributed.

Proposition 2.2. Let the set Ci be of the form

mi
⋂

l=1

{

SIlu ,tlu
(Ti)

SIld
,tld

(Ti)
< hl

}

, (28)

with Ilu , Ild denoting the indexes of abstract assets, hl ≥ 0 and tlu , tld ≤ Ti.

Then P
QSIi,ti
t (Ci) is of the form

N
SIi,ti
mi (v;φ,Σ), (29)

with Nmi
denoting the mi-dimensional multivariate normal cumulative dis-

tribution function, with covariance matrix Σ and mean vector φ, evaluated
at vector v.

Proof. By (8) and recalling that all Si(t) are positive by definition, we have

mi
⋂

l=1

{

SIlu ,tlu
(Ti)

SIld
,tld

(Ti)
< hl

}

= (30)

m
⋂

l=1

{mlu
∑

a=1

αa log(Sia,ta(tlu)) −

mld
∑

b=1

αb log(Sib,tb(tld)) < log (hl)

}

. (31)

Proposition 2.1 tells us that all log(Sl,s(t)) are jointly normally dis-
tributed. Therefore, the random vector X with mi elements

Xl =

mlu
∑

a=1

αa log(Sia,ta(tlu)) −

mld
∑

b=1

αb log(Sib,tb(tld)), (32)

with l = 1, . . . ,mi, is just a linear transformation of the vector of variables of
the type of log(Sl,s(t)) and, therefore, is normally distributed (or its elements
are jointly normally distributed).
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From proposition 2.1 we can derive their mean. Thus, φ = [φ1, . . . , φmi
]T

with

φl =

mlu
∑

a=1

αa

(

log(Sia(t0 ∧ ta)) +

∫ tlu∧ta

t0∧ta

dia(s) + ζSIi,ti
ia(s) −

σ2
ia

(s)

2
ds

)

−

−

(mld
∑

b=1

αb

(

log(Sib(t0 ∧ tb)) +

∫ tld∧tb

t0∧tb

dib(s) + ζSIi,ti
ib(s) −

σ2
ib
(s)

2
ds

))

(33)

= log
(

SIlu ,tlu
(t0)
)

+

∫ Ti

t0

dSIlu
,tlu

(s) −
σ2

SIlu
,tlu

(s)

2
+ ζSIi,ti

SIlu
,tlu

(s)ds

−



log
(

SIld
,tld

(t0)
)

+

∫ Ti

t0

dSIld
,tld

(s) −
σ2

SIld
,tld

(s)

2
+ ζSIi,ti

SIld
,tld

(s)ds



 .

(34)

Let us define Σef , the elements of Σ, with e, f = 1, . . . ,mi. The covari-
ance between two of the random variables Xe, Xf is, by definition,

Σef = E
QSIi,ti
t0

[(Xe − φe) (Xf − φf )] , (35)

which yields, after some simple algebra,

∫ Ti

t0

ζ
Se

Ilu
,tlu

S
f
Ilu

,tlu

(s) − ζ
Se

Ilu
,tlu

S
f
Ild

,tld

(s)

− ζ
Se

Ild
,tld

S
f
Ilu

,tlu

(s) + ζ
Se

Ild
,tld

S
f
Ild

,tld

(s)ds, (36)

where S
e
. and S

f
. are the assets in conditions l = e and l = f respectively.

It is worth noting that the covariance is the same whatever the measure
under which the expectation is taken. This follows the well known fact that
changes of martingale measures only modify the location of the distribution
and not its shape.

The variance of Xe is obtained with f = e. The elements of the vector
v are vl = log(hl), with l = 1, . . . ,mi.

2.5 Pricing Formula

Proposition 2.2 together with Equation (24) allow us to write the following:

Theorem 2.1. The arbitrage free price of the claim with payoff Φk as in (19)
and the sets Ci as in (28) can be calculated using the formula

V (t0) =

n
∑

i=1

ciSIi,ti(t0) exp

{

−

∫ Ti

t0

rSIi,ti
(u)du

}

N
SIi,ti
mi (v;φ,Σ). (37)
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Finally, we may also consider the complement of sets Ci in proposi-

tion 2.2, as we have P
QSIi,ti
t

(

Ci

)

= 1 −N
SIi,ti
mi (v;φ,Σ), by the properties of

cumulative distribution functions.

2.6 Derivatives

Developing a closed pricing formula has immediate benefits when it comes to
pricing the claims and also opens the possibility of allowing the calculation
of the quantities relevant for hedging strategies and risk management, i.e.,
partial derivatives, also by closed formulas. This assumes special importance
as the numeric methods to calculate the price typically show significant
degradation when used to evaluate partial derivatives.

The approach we take to calculate the relevant partial derivatives relies
on the works of Carr [4] and of Reiß and Wystup [17]. The first paper shows
how to calculate spatial derivatives, i.e., derivatives with respect to the
asset prices, by deriving the payoff function instead of the pricing formula.
The second enables us to write the derivatives with respect to the other
parameters in the model as functions of the spatial derivatives, in particular
with respect to correlation parameters.

We start by writing the partial differential equation (PDE) implicit in
the pricing formula (20) by using the Feynman-Kac theorem

Vt +
1

2

n
∑

i,j=1

ζSIi
SIj

SIi
SIj
VSIi

SIj
+

n
∑

i=1

dSIi
SIi
VSIi

= rkV, (38)

where we removed the parameters of all the functions and processes to pro-
mote clarity and also the freeze time subscript making SIi,ti(t) = SIi

. n is
the number of abstract assets in the model and the subscripts of V denote
partial derivatives. See Björk [1] for details.

If we derive PDE (38) with respect to any SIi
we get a PDE for the

derivative function, the quantity needed for delta-hedging the claim. Con-
secutive derivations yield PDEs for all higher order spatial derivatives.

We now need to write the PDE (38) derivative with respect to an arbi-
trary sequence of variables. Hence, we write it as

VtDp +
1

2

n
∑

i,j=1

ζSIi
SIj

SIi
SIj
VSIi

SIj
Dp

+

n
∑

i=1

ai(Dp)SIi
VSIi

Dp
= b(Dp)VDp , (39)

with Dp denoting the sequence of derivations, formally Dp =
∏p

h=1 SIh
, and

Ih an index of an abstract asset in the model. Additionally, ai and b are
functions of time t defined by
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ai(Dp) = dSIi
+

p
∑

h=1

ζSIi
SIh
, (40)

b(Dp) = rk −

p
∑

h=1

dSIh
−

p
∑

f=1

p
∑

g=f+1

ζSIf
SIg
. (41)

We list ai and b in Table 1 for the first and second order derivatives.

Table 1: ai and b for the first and second order derivatives.
p = 0 p = 1 p = 2

Dp 1 SI1 SI1SI2

ai(Dp) dSIi
dSIi

+ ζSIi
SI1

dSIi
+ ζSIi

SI1
+ ζSIi

SI2

b(Dp) rk rk − dSI1
rk − dSI1

− dSI2
− ζSI1

SI2

It is worth noting that ai and b of the first order derivatives recover the
trend of all SIi

s under the measure QSI1
in equation (18) and the deposit

rate rSI1
in equation (16), respectively. The volatilities and covariances are

trivially recovered since they do not change. Hence, the measure under
which we should take the expectation of the first derivative of the payoff,
with respect to SI1 , is the measure where SI1 itself is the numéraire, i.e., QSI1

.
Therefore, we denote the measure produced by the p-th order derivative as
QDp with the respective numéraire Dp =

∏p
h=1 SIh

and deposit return rate
rDp = b(Dp).

To apply the Feynman-Kac theorem to the PDE (39), all we need is to
calculate the respective boundary condition. We do so on a term by term
basis of contract function (19)

∂pΦk

∂Dp

=
n
∑

i=1

ci
∂p (SIi,ti(Ti)ICi

)

∂Dp

. (42)

We can now proceed to write an expression for the spatial derivatives.

Theorem 2.2. Spatial derivatives of the pricing function of the V (t(0)) are
given by the expression

∂pV (t0)

∂Dp(t0)
=

n
∑

i=1

ci exp

{

−

∫ Ti

t0

rDp(u)du

}

E
QDp

t0

[

∂p
SIi,ti(Ti)ICi

∂Dp

]

. (43)

Despite its condensed look, this formula harbors some amount of com-
plexity. To clarify, and for completeness, we write the evaluation formulas
for the first order derivatives. We start by writing explicitly the first deriva-
tive of the contract function. To consider only sets Ci that yield closed form
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solutions, we use the definition in Proposition 2.2 as a product of indicator
functions. Thus,

ICi
=

mi
∏

l=1

I(

SIlu
,tlu

(Ti)

SIld
,tld

(Ti)
<hl

). (44)

To derive the contract function, all we need is to apply the product rule
and to recall that

∂I{a
b
<c}

∂b
= δ(a− bc), and

∂I{a
b
<c}

∂a
= −δ(a− bc), (45)

with δ(x) the Dirac delta function.3

We find

∂Φk

∂SIx,tx(Ti)
=

n
∑

i=1

ci






I{(Ix,tx)=(Ii,ti)}ICi

+SIi,ti(Ti)







mi
∑

j=1

I{(Ix,tx)=(Ijd
,tjd

)}δ
(

SIju ,tju
(Ti) − hjSIjd

,tjd
(Ti)

)

mi
∏

l 6=j

I(

SIlu
,tlu

(Ti)

SIld
,tld

(Ti)
<hl

)

−
mi
∑

j=1

I{(Ix,tx)=(Iju ,tju )}δ
(

SIju ,tju
(Ti) − hjSIjd

,tjd
(Ti)

)

mi
∏

l 6=j

I(

SIlu
,tlu

(Ti)

SIld
,tld

(Ti)
<hl

)












.

Taking advantage of the fact that QDp = QSIx,tx
, the first order deriva-

tive formula turns out to be

3The Dirac delta function is characterized by the two properties

δ(x) =

(

0 if x 6= 0

∞ if x = 0
and

Z +∞

−∞

δ(x)dx = 1.
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∂V (t0)

∂SIx,tx(t0)
= exp

{

−

∫ Ti

t0

rSIx,tx
(u)du

}

· (46a)





n
∑

i=1

I{(Ix,tx)=(Ii,ti)}ciN
SIx,tx
mi (v;φ,Σ) (46b)

+
n
∑

i=1

ciSIi,ti(t0)

mi
∑

j=1

I{(Ix,tx)=(Ijd
,tjd

)}N
SIx,tx
mi

(

v;φ,Σ |
SIju ,tju

(Ti)

SIjd
,tjd

(Ti)
= hj

)

(46c)

−
n
∑

i=1

ciSIi,ti(t0)

mi
∑

j=1

I{(Ix,tx)=(Iju ,tju )}N
SIx,tx
mi

(

v;φ,Σ |
SIju ,tju

(Ti)

SIjd
,tjd

(Ti)
= hj

)



 .

(46d)

For performance reasons, it is important to observe that the probabilities

N
SIx,tx
mi (v;φ,Σ) in (46b) are also calculated in the context of the pricing

function.
In order to recover the derivatives with respect to real asset prices Sl,

all we need is to apply the chain rule. Thus,

∂V (t0)

∂Sl(t0)
=

n
∑

x=1

∂V (t0)

∂SIx,tx(t0)

∂SIx,tx(t0)

∂Sl(t0)
. (47)

The first factor in the summation is the one we derived above; the second
factor is a simple derivative that either yields zero, if Sl(t0) no longer affects
SIx,tx(t0), or yields SIx,tx(t0)

αl

Sl(t0) otherwise, with αl as in the definition (8).

Finally, we can use the result from Reiß and Wystup [17] to calculate the
derivatives with respect to the other model parameters. As an example, in
a model with constant volatilities and correlations, a derivative with respect
to the correlation between two asset prices is given by

∂V (t0)

∂ρjk

= Sj(t0)Sk(t0)σjσk

∂2V (t0)

∂Sj(t0)∂Sk(t0)
(t∗ − t0), (48)

With t∗ the maximum t, with t0 ≤ t ≤ T , such that both Sj(t) and Sk(t)
still influence the payoff function Φk.

3 Applications

We believe that this paper provides relevant contributions to several prac-
tical problems. First of all, it offers a multi-currency, multi-asset model
description fit for implementation. The model itself is of the Black–Scholes
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type with time dependent parameters. The general description of the con-
tract payoff allows for implementations where each instrument is defined
through a payoff language. Such a payoff language enables addition of new
instruments without additional development of the application. The pay-
off profiles that are covered by the general form of the contract, in (19)
and (28), are the following: European style vanilla options, exchange op-
tions, digital options, forward start and cliquet options, options on the nth-
best/worst, options on the discretely observed maximum/minimum, most
types of mountain range options, discrete barriers and lookbacks, power op-
tions and combinations of these. It allows the use of the following prices
as underlying assets: stocks prices denominated on domestic currency, for-
eign currency (quanto), and foreign currency translated to domestic, as well
as geometric averages of stocks prices to produce geometric Asian options
or geometric basket options. These last two types are not as common in
the industry as their arithmetic counterparts, but their prices are still very
useful as control variates, which are very effective in reducing the variance
of Monte Carlo simulations of the arithmetic versions. To illustrate the
breadth of instruments covered by the contract definition above, we provide
below a series of examples.

3.1 Performance

As the pricing formula for the contract requires several evaluations of mul-
tivariate normal probabilities, it is crucial to weight its computational cost
against that of the alternative methods. To calculate the multivariate nor-
mal, we used the method developed by Genz [8]. The alternative, as far as
we know, is only a Monte Carlo simulation that may, or may not, include
variance reduction techniques. However, due to the fact that the conver-
gence of Monte Carlo simulations depends strongly on the payoff profile of
the contract, it is impossible to run a performance comparison valid for the
contract’s general form (28). Therefore, we shall provide only case based
performance analyses in each example of section 3.2. For a performance
comparison focused only on the calculation of the multivariate normal prob-
abilities, we refer to Genz [8]. The Genz method also relies on a Monte Carlo
simulation but does so in the context of a chain of unidimensional integrals.
For this reason, the closed formula prices of the examples below will also
show an error term.

In most cases, we have encountered that the closed formula outperforms
the Monte Carlo simulation, though to different degrees depending on several
factors. The addition of asset prices to the payoff implies an increase in
the number of dimensions of both procedures, although it generally weighs
heavier on Monte Carlo simulation. The presence of several time points
at which stock prices are observed to compose the claim’s payoff greatly
increases the dimensionality of the Monte Carlo simulation, degrading thus
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its performance. Several time points also have an impact on the closed
formula alternative, as they give rise to highly correlated random variables.
The complexity of the payoff may require the evaluation of a large number
of summands in (37), thus worsening the performance of the closed formula
while not necessarily changing the Monte Carlo’s performance.

Finally, the integrals of the parameter functions r, σ and ς typically have
closed form solutions, as their definition is usually done as piece-wise linear
functions or functions that have indefinite integrals. Therefore, its calcula-
tion has a residual impact on the overall computation time. The same is
true, by definition, for integrals of δ, θ and ζ functions.

3.2 Examples

Our market setup for the cases included in this section is described as follows.
The numéraire asset is chosen to be the asset in which the options pay off.
It is the same for all options, and it yields risk free returns at the rate of
5%. We then have 5 currencies with risk free yields, from the first to the
last, of 1%, 2%,...,5% respectively. The price of each currency is expressed
in terms of the numéraire asset (in the natural direction) and they have
volatilities, from the first to the last, of 11%, 12%, ..., 15% respectively. The
correlation between the currencies’ prices is 20% for all combinations. There
are also five equity indexes that yield risk free returns, from the first to the
last, of 2%, 4%, ...,10% respectively. The price of each index is expressed
(in the natural direction) in terms of the currency with the same cardinal
as the index. All indexes start with a price of 100. The volatilities of each
index, from the first to the last, are 22%, 24%, ..., 30% respectively. The
correlation between any two indexes is 60%. The correlation between any
combination of index and currency is 10%.

We consider four options: a cliquet on the first index, a best of five
indexes, a discrete lookback on the first index, and a Himalaya on the first
three indexes. All options have a maturity of one year, T = 1, t0 = 0.

The cliquet option has five periods of equal length. Hence, it can be
viewed as a portfolio of a vanilla at-the-money (spot) option plus four for-
ward start at-the-money (spot) options. As vanillas and forward start op-
tions involve only one condition, the cliquet option is evaluated instantly.
In fact, in this case, the general formula (37) reduces to the known closed
formula for cliquets.

Φ =
5
∑

n=1

Φn

(n

5
T
)

, Φn

(n

5
T
)

=

(

S1

(n

5
T
)

− S1

(

n− 1

5
T

))+

.

The best of five pays off the difference, if positive, between the maximum
of the five index values at maturity and 100.
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Φ(T ) = (max (S1(T ), . . . , S5(T )) − 100)+ .

The discrete lookback pays off the difference, if positive, of the highest
stored value of the first index and 100. The index values are stored 12 times
during the year at evenly spaced times, starting at 1/12.

Φ(T ) =

(

max

(

S1

(

1

12
T

)

, S1

(

2

12
T

)

. . . , S1

(

12

12
T

))

− 100

)+

At the end of each period of 1/3 units of time, the Himalaya option
pays off the best return of the three first indexes over that period times 100,
but only if the best return is positive. The indexes that pay out are not
considered for any of the subsequent periods.

Φ =

3
∑

n=1

Φn

(n

3
T
)

,

Φn

(n

3
T
)

= 100 max

(

0, ηn,1
S1

(

n
3T
)

S1

(

n−1
3 T

) , ηn,2
S2

(

n
3T
)

S2

(

n−1
3 T

) , ηn,3
S3

(

n
3T
)

S3

(

n−1
3 T

)

)

,

where ηn,i equals 0 if the asset i has determined the payout of one of the
payments at any time t < n

3T , and 1 otherwise.
The parameterization of these payoff functions, including the set defini-

tion for each of the terms in the payoff summation, is given in the appendix.
To assess the performance of the closed formula, we benchmark the re-

sults against a Monte Carlo experiment. The results are shown in Table 2.
The Table shows a price estimate and a 99% confidence error bound ex-
pressed in percentage of the price estimate. The pricing routines were al-
lowed to run for 10 seconds and for five minutes.

Table 2: Tests results.
Cliquet Best of 5 Lookback Himalaya

calculation time = 10”
MC 18.27 0.53% 19.16 0.43% 13.50 1.03% 174.46 0.57%
CF 18.33 — 19.16 0.29% 13.47 1.24% 173.90 0.05%
calculation time = 5’
MC 18.33 0.10% 19.16 0.08% 13.50 0.19% 173.97 0.10%
CF 18.33 — 19.15 0.05% 13.51 0.23% 173.93 0.01%

The results show that the closed formula is superior in all cases but the
lookback. The cliquet case just shows that the general formula is able to
produce the already known formulas, namely for vanilla options, exchange
options, forward starts, digitals and others of European style that constitute
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unidimensional problems. The best-of-5 is an example with low correlation
between random variables, in this case between different stocks, and only
one time horizon, the maturity date. The closed formula increases the pre-
cision by a factor of 1.45(=0.427%/0.294%). Hence, considering the rate of
convergence of the Monte Carlo, the closed formula is 2.11(=1.452) times
faster. In the Himalaya case, the performance is even more extreme with the
precision increasing by a factor of 10.52(=0.571%/0.543%) or, equivalently,
111(=10.522) times faster. The Himalaya is a case in which the closed for-
mula performs particularly well. Even though it requires the evaluation of
63 cumulative probability functions, they are of low dimensionality, 6.9 on
average, while the Monte Carlo engine needs to account for a 9 dimensional
problem (3 stocks observed at 3 time horizons). In the Lookback case, the
dimensionality was 12 for both methods and required the evaluation of 13
cumulative probability functions.

The Lookback result came as a suprise as the closed formula performed
worse than in the Monte Carlo simulation. To figure out what was causing
the poor performance, we applied two variations to the initial problem.
We first diminished the number of observation points to 4 to test if the
dimensionality constituted a problem. Then we enlarged the time between
two observations from 1 month to 3 months. The results for 5 minute
simulations are listed in Table 3.

Table 3: Lookback results.
Observations

12 4
MC CF MC CF

∆t = 1/12 13.50 0.19% 13.51 0.23% 6.85 0.09% 6.85 0.10%
∆t = 3/12 20.99 0.20% 20.99 0.14% 11.33 0.10% 11.34 0.06%

These results lead us to conclude that the closed formula does not pro-
vide better performance when the time between observations is small and
starts to perform better the larger the time between observations. Small in-
tervals between observations give rise to highly correlated random variables,
the asset prices at each observation moment. Such cases are known to carry
convergence problems for numerical procedures, and thus it is not supris-
ing that the multivariate normal numerical procedure performance shows
degradation. What is suprising though is that it shows worst results than
the Monte Carlo simulation, which also suffers from the same effect as it is
also a numerical procedure.

4 Conclusion and Future Research

The results above produce a closed formula that generalizes a large class of
multivariate European style options, ranging from the plain vanilla to moun-
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tain range options. It does so in a generalized Black-Scholes model, with
time dependent parameters, able to cope with an arbitrary number of cur-
rency zones. It introduces the concept of abstract assets as an intermediate
random variable that allows the formula to cover variations like geometric
averages, baskets, asset prices expressed in foreign currencies, and forward
start features. In fact, abstract assets are a useful generalization of the asset
concept and should be considered as a replacement of plain assets in Monte
Carlo engines.

The closed formula performs better than the alternative Monte Carlo
simulations in most cases, improving performance by more than 100 times
in the most extreme. However, for problems with highly correlated ran-
dom variables the performance was worse than Monte Carlo’s. The exam-
ples show that even when the closed formula requires the evaluation of a
large number of cumulative probability functions, it still outperforms Monte
Carlo.

As a byproduct of the definition of the closed formula, a language for
option payoff definition arises. This language acquires extreme importance
in industrial systems as it enables the decoupling of the payoff definition
function from the pricing function. Hence, the pricing function is able to
price any option as long as its payoff is expressable in terms of the language.

Future research should focus on including other features of options for
which there are closed formulas, namely continuous barrier and lookback
features. The problem with including barrier options in the general formula
above is that it requires the knowledge of the joint distribution of a Brownian
motion with time dependent drift and its running maximum. The results on
Brownian motion with constant drift are applicable neither to models with
time dependent parameters nor to abstract asset’s dynamics.

Appendix

The payoff parameterization of the options considered in the examples sec-
tion above follows expression (19) and uses that same notation. The Ci set
definition follows expression (28) and also uses its notation. For each term
in the payoff (19), it is still required to select if the set Ci or its complement,
Ci, determines the payment.

The index of the numéraire asset is I. = 0. As the examples do not
include payments of currency prices, we index the underlying equity indexes
with I. = 1, . . . , 5.

Cliquet Option

This option payoff is composed of 10 terms. The terms follow a structure
that can be summarized by iterating t = 0.2, 0.4, 0.6, 0.8, 1. In this case
the sets Ci have only one condition for all terms, i.e., mi = 1.
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Term i = 1, 3, 5, 7, 9 (strike payment for each t)
ci Ii ti Ti Set Complement Flag

-1 1 t− 0.2 t false
Set Ci

Ilu tlu Ild tld hl

1 t− 0.2 1 t 1

Term i = 2, 4, 6, 8, 10 (index price reception for each t)
ci Ii ti Ti Set Complement Flag

1 1 t t false
Set Ci

Ilu tlu Ild tld hl

1 t− 0.2 1 t 1

Best of 5

This option payoff is composed of 6 terms, five for the reception of each of
the five possible maximum index prices at maturity, and one payment of the
exercise price 100.

The terms for each of the five index payments follow the following rule.
Let ai = 1, . . . , 5 and let bi,1, . . . , bi,4 be the elements of the set {1, 2, 3, 4, 5}\
ai.

The terms for reception of each of the five index prices is parameterized
by

Term i = 1, . . . , 5 (index price reception)
ci Ii ti Ti Set Complement Flag

1 ai 1 1 false
Set Ci

Ilu tlu Ild tld hl

0 0 ai 1 1/100
bi,1 1 ai 1 1
bi,2 1 ai 1 1
bi,3 1 ai 1 1
bi,4 1 ai 1 1

The term of the strike payment is parameterized as
Term i=6 (strike payment)
ci Ii ti Ti Set Complement Flag

-100 0 1 1 true
Set C6

Ilu tlu Ild tld hl

a1 1 0 0 100
a2 1 0 0 100
a3 1 0 0 100
a4 1 0 0 100
a5 1 0 0 100
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Discrete Lookback

This option payoff is composed of 13 terms, 12 for the reception of each of
the 12 possible maximum values of the index prices during the life of the
option, and one payment of the exercise price 100.

The terms for each of the 12 index payments follow the following rule.
Let ui = 1/12, 2/12, . . . , 12/12 and let vi,1, . . . , vi,11 be the elements of the
set {1/12, 2/12, . . . , 12/12} \ ui.

The terms for reception of each of the 12 possible maximum index prices
is parameterized by

Term i = 1, . . . , 12 (index price reception)
ci Ii ti Ti Set Complement Flag

1 1 ui 1 false
Set Ci

Ilu tlu Ild tld hl

0 0 1 ui 1/100
1 vi,1 1 ui 1
1 vi,2 1 ui 1

...
1 vi,11 1 ui 1

The term of the strike payment is parameterized as
Term i=13 (strike payment)
ci Ii ti Ti Set Complement Flag

-100 0 0 1 true
Set C13

Ilu tlu Ild tld hl

1 u1 0 0 100
1 u2 0 0 100

...
1 u12 0 0 100

Himalaya

This option has payments at three distinct times. For each of the periods
that end at these payment dates, only the period return matters and not
the accumulated return since inception. We represent each of these returns
with an abstract asset price of the form

Sj = Sj, n
3

T /Sj, n−1
3

T ,

the ratio of two versions of the same price process frozen at different moments
in time. The numerator version, frozen at the end and the denominator at
the beginning of the reference return period. As we have 3 assets and 3
return periods, we have 9 abstract assets for all combinations of both.
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We shall index the abstract assets that represent the first period return
on the first 3 assets by a1,i = 1, 2, 3. The returns of the second period
returns are indexed as a2,i = 4, 5, 6. Finally, the returns of the third period
are indexed by a3,i = 7, 8, 9, with i = 1, 2, 3. We also have bj,i,1, bj,i,2, the
elements of the set {aj,1, aj,2, aj,3} \ aj,i.

For the payments at the end of the first period, at t = T/3 we have 3
terms in the payoff function.

Term i = 1, 2, 3 (index price return reception, t = T/3)
ci Ii ti Ti Set Complement Flag

100 a1,i 1 1 false
Set Ci

Ilu tlu Ild tld hl

a1,i 0 a1,i 1 1
b1,i,1 1 a1,i 1 1
b1,i,2 1 a1,i 1 1

For the payments at the end of the first period, at t = 2T/3 we have
12 terms in the payoff function. For each of the 3 possible return payments
there are 4 terms, all with the same asset payment and the 4 sets Ci below.

Term i, with i = 1, 2, 3 (index price return reception, t = 2T/3)
ci Ii ti Ti Set Complement Flag

100 a2,i 2 2 false
Sets Ci, with g1, g2 the elements of all the possible permutations of the

elements of the set {1, 2}
Ilu tlu Ild tld hl

a2,i 1 a2,i 2 1
b2,i,1 2 a2,i 2 1
b2,i,2 2 a2,i 2 1
a1,i 1 b1,i,1 1 1
a1,i 1 b1,i,2 1 1

Ilu tlu Ild tld hl

a2,i 1 a2,i 2 1
b2,i,1 2 a2,i 2 1
b2,i,2 2 a2,i 2 1
b1,i,g1 1 a1,i 1 1
a1,i 1 b1,i,g2 1 1

Ilu tlu Ild tld hl

a2,i 1 a2,i 2 1
b2,i,1 2 a2,i 2 1
b2,i,2 2 a2,i 2 1
b1,i,1 1 a1,i 1 1
b1,i,2 1 a1,i 1 1
a1,i 1 a1,i 0 1

For the payments at the end of the first period, at t = 3T/3 we have
48 terms in the payoff function. For each of the 3 possible return payments
there are 16 terms, all with the same asset payment and the 16 sets Ci below.

Term i, with i = 1, 2, 3 (index price return reception, t = 3T/3)
ci Ii ti Ti Set Complement Flag

100 a3,i 3 3 false
Sets Ci, with g1, g2 the elements of all the possible permutations of the
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elements of the set {1, 2}, and h1, h2 also the elements of a similar permu-
tation.

Ilu tlu Ild tld hl

a3,i 1 a3,i 2 1
b3,i,1 2 a3,i 2 1
b3,i,2 2 a3,i 2 1
a1,i 1 b1,i,1 1 1
a1,i 1 b1,i,2 1 1
a2,i 2 b2,i,1 2 1
a2,i 2 b2,i,2 2 1

Ilu tlu Ild tld hl

a3,i 1 a3,i 2 1
b3,i,1 2 a3,i 2 1
b3,i,2 2 a3,i 2 1
a1,i 1 b1,i,1 1 1
a1,i 1 b1,i,2 1 1
a2,i 2 b2,i,g1 2 1
b2,i,g2 2 a2,i 2 1

Ilu tlu Ild tld hl

a3,i 1 a3,i 2 1
b3,i,1 2 a3,i 2 1
b3,i,2 2 a3,i 2 1
a1,i 1 b1,i,h1 1 1
b1,i,h2 1 a1,i 1 1
a2,i 2 b2,i,1 2 1
a2,i 2 b2,i,2 2 1

Ilu tlu Ild tld hl

a3,i 1 a3,i 2 1
b3,i,1 2 a3,i 2 1
b3,i,2 2 a3,i 2 1
a1,i 1 b1,i,h1 1 1
b1,i,h2 1 a1,i 1 1
a2,i 2 b2,i,g1 2 1
b2,i,g2 2 a2,i 2 1

Ilu tlu Ild tld hl

a3,i 1 a3,i 2 1
b3,i,1 2 a3,i 2 1
b3,i,2 2 a3,i 2 1
a1,i 1 b1,i,1 1 1
a1,i 1 b1,i,2 1 1
b2,i,1 2 a2,i 2 1
b2,i,2 2 a2,i 2 1
a2,i 2 a2,i 1 1

Ilu tlu Ild tld hl

a3,i 1 a3,i 2 1
b3,i,1 2 a3,i 2 1
b3,i,2 2 a3,i 2 1
a1,i 1 b1,i,g1 1 1
b1,i,g2 1 a1,i 1 1
b2,i,1 2 a2,i 2 1
b2,i,2 2 a2,i 2 1
a2,i 2 a2,i 1 1

Ilu tlu Ild tld hl

a3,i 1 a3,i 2 1
b3,i,1 2 a3,i 2 1
b3,i,2 2 a3,i 2 1
b1,i,1 1 a1,i 1 1
b1,i,2 1 a1,i 1 1
a1,i 1 a1,i 0 1
a2,i 2 b2,i,1 2 1
a2,i 2 b2,i,2 2 1

Ilu tlu Ild tld hl

a3,i 1 a3,i 2 1
b3,i,1 2 a3,i 2 1
b3,i,2 2 a3,i 2 1
b1,i,1 1 a1,i 1 1
b1,i,2 1 a1,i 1 1
a1,i 1 a1,i 0 1
a2,i 2 b2,i,g1 2 1
b2,i,g2 2 a2,i 2 1

25



Ilu tlu Ild tld hl

a3,i 1 a3,i 2 1
b3,i,1 2 a3,i 2 1
b3,i,2 2 a3,i 2 1
b1,i,1 1 a1,i 1 1
b1,i,2 1 a1,i 1 1
a1,i 1 a1,i 0 1
b2,i,1 2 a2,i 2 1
b2,i,2 2 a2,i 2 1
a2,i 2 a2,i 1 1
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