

FX Column: Before Takeoff - Model Validation Checklist

Uwe Wystup, MathFinance AG, Frankfurt am Main

Before a pricing and risk management model can fly, it needs to be validated. Similarly, a pilot is required to check an airplane before takeoff following a checklist, so a flight is a safe and smooth as possible. There might have been the best engineers to build the engine and the fuselage, the most modern avionics, but still a checklist is required before each flight. Figure 1 illustrates the items to check to fly a Mooney 20J.

M20J Mooney					Та	xi, B	efore	Tak	eoff,	Take	eoff, (Cruis	se, D	esce
Throttle	1000 RPM	Transponder	Set/ALT	Takeoff Pe	erforman	ce - Max	Weight	Zero Wi	nd					
Oil Pressure Green Arc		Fuel Pump	On	Pressure 0°C 10°C 20°C 30°C 4							40	°C		
Ammeter/Volts	Checked	Lights	On	Altitude in	Cround	Clear	Cround	Clear	Cround	Clear	Cround	Clear	Cround	Clear
Lights	As Desired	Brakes	Released	East	Ball	EO B	Ball	EO A	Ball	EO B	Ball	EO B	Ball	EO B
Engine Instruments	Checked	TAKEOER		Peel	Koli	04FF	RUI	30 IL.	RUII	0740	Roll	0700	ROII	30 IL.
Fuel Flow Computer Checked / Set		-TAREOFT	AND CLINIB-	Sea Level	1390	2100	1550	2403	1/50	2/13	1800	2790	2100	3255
-TAXIING-		Throttle	Full	2000	1600	2480	1800	2790	2000	3100	2100	3255	2300	3565
		Engine Gauges	Checked	4000	1980	3069	2350	3643	2400	4200	2550	4463	2750	4813
Radio Master	On	Annunciators	Checked	6000	2400	4200	2600	4550	2900	5278	3100	5642	3300	6006
Elevator Trim Switch	On	Rotate		8000	2980	5424	3250	5915	3500	6440	3800	6992	4200	7728
Autopilot	Test	Best Angle		10000	3500	6440	3800	6992						
ATIS/AWOS	Obtained	Best Rate		Liftoff at 59	KIAS, 7	6 KIAS at	50 Ft							
IFR Clearance / Void Time .	Obtained	Gear	Up											
Transponder	Set/Standby	300' AGL	Flaps UP											
Altimeter	Set	Initial Course	Established											
GPS	Route Programmed	ATC	Contacted											
Radios	Set for Departure	Landing / Taxi Lights	Off	Londing D	orforma	non Ma	Malaht							
Fuel Selector	Switch Tanks	Cruise Climb	26"/2600 RPM/100 KIAS	Landing Performance - wax weight										
Cowl Flaps	As required	CRIIISE		Pressure	0	°C	10	°C	20	J°C	30	D°C	40	°C
Taxi Clearance	Obtained	— C F	KUISE-	Altitude in	Ground	Clear	Ground	Clear	Ground	Clear	Ground	Clear	Ground	Clear
Taxi Area	Clear	Fuel Pump	Off	Feet	Roll	50 ft.	Roll	50 ft.	Roll	50 ft.	Roll	50 ft.	Roll	50 ft.
Parking Brake	Release	Power	Set	Sea Level	1309	2225	1382	2350	1397	2375	1426	2425	1471	2500
Brakes and Steering	Checked	Economy Cruise		2000	1412	2400	1471	2500	1544	2625	1588	2700	1618	2750
Flight Instruments	Checked	Best Power	100 rich of peak EGT	4000	1588	2700	1647	2800	1706	2900	1809	3075	1871	3180
HSI	Slaved	Trim	Adjusted	6000	1765	3000	1838	3125	1912	3250	1940	3375	2000	3480
-BEFORE TAKEOFF-		Cowl Flaps Autopilot	Closed Engaged	8000	1940 2225	3375 4050	2011	3500	2083	3625	2155	3750	2184	3800
Brakes	Set	Fuel Selector	Switch Tanks every 30 min	Approach	Crood 70	KIAR				_		_		
Fuel Selector	Fullest Tank	Navigation Log	Updated	Approach	speeu /o	NIAO								
Propeller	Full Forward	ETA and Remaining Fu	el Calculated											
Mixture		Destination Weather / P	IREPS Updated	Cruico Por	formanc	o - Proc	euro Altit	ht2/abu	Temp -	25° Rich	of Peak	EGT		
Cowl Flaps	As Required	Comm 1	Set to ATC	Depait		1	J	Eucl	Temp - 2		T	1	Fuel	
Throttle	2000 RPM	Comm 2	Guarding 121.5	Altitude	70 Deuter	MD	DDM	Fuel	KTAC	70 Deuter	MD	DDM	Fuel	KTAC
Magnetos Check	(Max Drop 175 RPM.	Cockpit Chatter	Normal	Alutude	Power	MP	RPIN	FIOW	KIAS	Power	MP	RPIM	FIOW	KIAS
•	Difference 50 RPM)	DE	RCENT	2000	65	22.6	2400	0.2	140	76	26.9	2400	10.2	150
Propeller	Cycle 3X	-DE:	SCENT-	2000	00	23.0	2400	9.2	148	75	20.8	2400	10.3	100
Ammeter	Checked	Power	Gradually Reduced	4000	00	23.3	2400	9.2	150	75	24.4	2000	10.5	101
Annunciators	Checked	Avoid continuous opera	tion between 1500 and 1950	6000	65	22.8	2400	9.2	152	75	24.1	2600	10.5	163
Throttle	1000 RPM	RPM with less than	15" Manifold Pressure	0008	65	21.2	2600	9.4	155	/5	23.6	2700	10.8	165
Trim	Set for Takeoff	CHT 3	00 minimum	10000	55	19.5	2400	8.1	144	65	21.1	2600	9.4	160
Flaps	Set for Takeoff	Pitch	For Cruise Airspeed	12000	55	19.3	2400	8.1	146					9
Speedbrakes	Tested and Retracted	Speedbrakes	As needed 2200 RPM / 22"	14000	55	17.9	2600	8.3	148		1			3
Elight Controls	Free and Correct	Mixture Adjusted	to best economy (25 ROP)	Add .04" M	IP for eac	h degree	C above	standard	d. Reduce	e .04" MF	o for each	degree (C below s	tandard.
Radios	On/Set		., (,											
Autopilot	Starving													
	Oldi NUY													

Figure 1: Checklist to Fly a Mooney M20J, prepared by MetzAir

Unless all items have been checked and verified, the plane won't take off. Similarly, for an FX derivatives pricing model, even one that has been built by the best financial engineers with most current numerical methods and most modern IT, the model validation team needs to check the model and approve it before it can fly, i.e. be taken to production. And even when it is in production, it must be constantly monitored, just like a plane in cruise mode.

So here is a proposal for a model validation checklist the MathFinance team has drafted.

- 1. Theoretical review
- ✓ Describe model in mathematical terms
- ✓ Describe calibration mechanisms
- ✓ Describe pricing implementation
- ✓ Describe fallback mechanisms if any

2. Model suitability

- ✓ Check if the model is fit for purpose.
- ✓ Benchmark with existing market prices, or other models.

3. Model implementation correctness

- ✓ Check if the implementation is in line with the mathematical description.
- ✓ As far as possible, test various building blocks individually to demonstrate their correctness.
- ✓ For limit-cases, compare the model to existing analytic formulas. For example, in the absence of smile, the model must recover existing analytic prices for vanilla options and/or 1st generation exotics.

4. Model input requirement

- ✓ The requirements on input data must be clearly stated.
- ✓ Define allowable range on model inputs.
- ✓ Test model behavior if requirements on model inputs and ranges are breached.

5. PV and Greeks accuracy tests

- ✓ Compare PV (Present Value), Delta and Vega of vanilla options produced by the model, to those produced using Black-Scholes analytic model.
- Tests must span a wide range of currency pairs (e.g. 10 with different volatility surface patterns), a wide range of dates (e.g. weekly data over a 2-year period), and a wide range of Delta (5-delta Put to 5-Delta call).
- ✓ Tests must include at least one period of stressed market (2008 crisis, referenda, etc.)
- ✓ Criteria: PV must be within bid/offer spread, typically a couple of basis points.
- ✓ Delta, within 2% CCY1 (absolute). Vega, within 0.05% CCY1 (absolute).

6. Stress tests

- ✓ Apply artificially large bumps to volatility inputs, from -99% to +400%
 - Uniformly on ATM, RRs and BFs
 - Scale ATM only, keeping original RRs and BFs (works only for up bumps)
 - Scale RRs and BFs only, keep original ATM
 - Parallel bumps of rate curves of +/- 10% absolute
- Compare PV, Delta and Vega of vanilla options produced by the model, to those produced using Black-Scholes analytic model.

7. Convergence tests

✓ Model must converge when increasing numerical accuracy (increase Monte Carlo paths, increase PDE grids resolution, increase number of points in a numerical integration)

- 8. Value-At-Risk tests (VaR)
- ✓ Test the suitability of the model for producing VaR
- ✓ Calibration must not fail. Or if it does, a fallback mechanism must kick-in.
- 9. Test Fall-Back mechanism impact on Greeks
- ✓ If a fallback mechanism exists, test its impact on PV and Greek ladders. When such mechanism kicks in, it introduces non-linearities, or discontinuities in the pricing, possibly spikes in the sensitivities.
- 10. Identify model known caveats and limitations
- ✓ State what risk factors are ignored
- ✓ State under what circumstances the model breaks down

Generally, one should add some explanations, tables and graphs to illustrate.

Example

As an example I consider model suitability and check a couple of models to price a 1-year one-touch in EUR-JPY paying EUR as of September 8 2020 and spot reference 124.55. I assume the market data on that day was as in Table 1 (with volatility quotes and EUR rates in %, forward points in JPY per EUR).

Tenor	ATM	25RR	25BF	10RR	10BF	Forward	EUR Rates	
						Points		
1W	8.25	-0.69	0.23	-1.27	0.65	0.90	-0.6725	
2W	7.86	-0.71	0.24	-1.32	0.67	1.80	-0.6777	
1M	7.93	-0.87	0.24	-1.60	0.70	3.30	-0.7625	
2M	8.60	-1.30	0.29	-2.41	0.91	6.90	-0.7494	
3M	8.57	-1.44	0.33	-2.66	1.06	10.20	-0.7311	
6M	8.33	-1.71	0.44	-3.17	1.48	15.35	-0.8260	
9M	8.39	-1.94	0.47	-3.61	1.63	23.10	-0.8031	
1Y	8.46	-2.10	0.49	-3.90	1.74	30.95	-0.8022	
2Y	8.56	-2.43	0.50	-4.51	1.78	52.45	-0.8311	

Table 1: Possible EUR-JPY market data of 8 September 2020

The graph in Figure 2 shows the price differences between model price and the Black-Scholes price of One Touch prices (TV). The models are Mixed Local Volatility (MLV)¹ with 100%, 60%, 0% mixing factor (same mixing factor for all tenors), "Mlv_Calib" and "Slv_Calib" in a Stochastic Local Volatility (SLV)² model are calibrated to the

¹ Uwe Wystup, Mixed Local Volatility Boosts Distribution of Exotics, FX column in Wilmott Vol 2020, Issue 110, p. 34-37, https://doi.org/10.1002/wilm.10885

² Uwe Wystup, Reverse Knockout Pricing Case Study: Stochastic Local Volatility versus Vanna Volga FX column in Wilmott Vol 2019, Issue 103, p. 16-17, https://doi.org/10.1002/wilm.10787

calibration instruments, with mixing factors 57% and 53% respectively. Prices of calibration instruments are indicated by the black dots. The Mustache³ graph contains both touch contracts with lower barriers left to the spot reference of 124.55 and touch contracts with upper barriers right to the spot reference. Bid-offer in EUR-JPY one-touch contracts is about 2%, corresponding to one unit on the y-axis.

Figure 2: Price Differences for a EUR paying 1Y-OneTouch in EUR-JPY, on 8 Sept 2020

Prices of calibration instruments are indicated by the black dots. The graphs illustrate that both an MLV and SLV model with appropriately calibrated mixing factors reproduce market prices of a EUR-paying EUR-JPY One-Touch contract. In the example we have 5 touch contracts as calibration instruments. Due to the concept of calibrated MLV and SLV models all vanilla options prices are met correctly.

To see which model fits the purpose, one can conclude that the MLV model reproduces market prices equally well as an SLV model and hence one might opt for the MLV model as the calculation speed is by a factor 10 faster than in the SLV model. A comparison with other models has also been illustrated. However, this is only item 2 on the model validation checklist.

Summary

All pricing and risk management models should be thoroughly validated before putting them in production. In the example above the MLV model seem to pass parts of the checklist. However, a vanna volga model with similar mustache graphs may also appear to be suitable, however, it would typically not pass item 5, as the Greeks in a vanna-volga approach may lead to inconsistencies⁴. I would like to stress though that no model is ever perfect, but we need to find the one that passes most of the items on the checklist, and only if it does, a desk will decided whether to use a model in production. Frequent, ongoing tests must be performed, even on the way.

³ Uwe Wystup, Mustache to Touch, FX column in Wilmott Vol 2019, Issue 102, p. 10-11, https://doi.org/10.1002/wilm.10771

⁴ Uwe Wystup, Vanna-Volga and the Greeks, FX column in Wilmott, Volume 2020, Issue 108, p. 14-16, https://doi.org/10.1002/wilm.10852

Figure 3: A Mooney 20J in Beaune between Sun and a Thunderstorm

And at the end of the day, whether or not to fly, must be decided by the pilot. The sun might be deceiving, see Figure 3. But possible thunderstorms can be detected, indeed, sometimes easily by checking the environment. Happy Landings!