
Efficient Computation of Option Price Sensitivities for Options of

American Style

Christian Wallner

Ostpreußenstraße 6A

21391 Reppenstedt

GERMANY

christian.wallner@gmx.net

Uwe Wystup

HfB - Business School of Finance and Management

Sonnemannstrasse 9 - 11

60314 Frankfurt am Main

GERMANY

http://www.mathfinance.de

July 19 2004

1

mailto:christian.wallner@gmx.net
http://www.mathfinance.de


2 Wallner, C. and Wystup, U.

Abstract

No front-office software can survive without providing derivatives of option prices with respect to
underlying market or model parameters, the so called Greeks. If a closed form solution for an option
exists, Greeks can be computed analytically and they are numerically stable. However, for American
style options, there is no closed-form solution. The price is computed by binomial trees, finite
difference methods or an analytic approximation. Taking derivatives of these prices leads to instable
numerics or misleading results, specially for Greeks of higher order. We compare the computation of
the Greeks in various pricing methods and conclude with the recommendation to use Leisen-Reimer
trees.

Keywords: American Options, Greeks, Leisen-Reimer trees.

JEL classification: C63, F31
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1 Introduction

We examine which is a suitable method to compute Greeks for American style call and put options in
the Black-Scholes model. We choose an exchange rate for the underlying following a geometric Brownian
motion,

dSt = St[(rd − rf ) dt+ σ dWt], (1)

under the risk-neutral measure. As usual rd denotes the domestic interest rate, rf the foreign interest
rate, σ the volatility. The analysis we do is also applicable to equity options, but we take the foreign
exchange market as an example. For contract parameters maturity in years T , strike K and put/call
indicator φ, which is +1 for a call and −1 for a put, the payoff of the option is

[φ(ST −K)]+ = max[0, φ(ST −K)]. (2)

We denote by V (t, x) the value of an American style put or call at time t if the spot St takes the value x.
It is well known (see e.g. Karatzas and Shreve [14]) that in this model the value at time zero is given by

V (0, S0) = sup
τ∈T

IE[e−rdτ [φ(Sτ −K)]+], (3)

where T is the set of all stopping times taking values in [0, T ]. A closed-form solution for this optimization
problem has not yet been found.

1.1 Option Price Sensitivities

Delta ∆ Vx

Gamma Γ Vxx

Theta Θ Vt

Rho (domestic) ρd Vrd

Rho (foreign) ρf Vrf

Vega Vσ

Volga Vσσ

Vanna Vxσ

Table 1: Commonly used Greeks, t is running time and x = S0

Option price sensitivities, the so-called Greeks of option values are derivatives with respect to market
variables or model parameters. The most commonly used Greeks are listed in Table 1. Numerous rela-
tionships and properties of the Greeks for European style options are presented in Reiss and Wystup [19].
Other relevant publications include the work by Carr [7], Broadie and Glasserman [6] in the case of Monte
Carlo simulations, Pelsser and Vorst [17] in the case of binomial trees, the work by Eric Benhamou [3]
and [4], who uses Malliavin calculus, and the contribution by Rogers and Stapleton [20] using binomial
trees with a random number of steps. Joubert and Rogers [13] use a lookup table for a fast, accurate and
inelegant valuation of American options. Formulae for Greeks of many exotic foreign exchange options
are published in Hakala and Wystup [10].
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Order Difference Quotient

1 f(x+h)−f(x)
h

1 f(x)−f(x−h)
h

2 f(x+h)−f(x−h)
2h

Table 2: Approximation for ∂f
∂x

Order Difference Quotient

2 f(x−h)−2f(x)+f(x+h)
h2

2 2f(x−2h)−f(x−h)−2f(x)−f(x+h)+2f(x+2h)
14h2

4 −f(x−2h)+16f(x−h)−30f(x)+16f(x+h)−f(x+2h)
12h2

Table 3: Approximation for ∂2f
∂x2

1.2 Approximation by Finite Difference Quotients

We summarize the common methods of numerical differentiation in Tables 2 and 3. For vanna one can
use

f(xi + h, xk + h)− f(xi − h, , xk + h)− f(xi + h, xk − h) + f(xi − h, xk − h)
4h2

. (4)

2 Computation Methods

2.1 Binomial Trees

The computation of option values with binomial trees was introduced by Cox, Ross and Rubinstein
(CRR) [8], where the assumption is used that the log-returns are binomially distributed. It is known that
in the limiting case this converges to the continuous Black-Scholes model. Some of the enhancements
include Jarrow and Rudd [12], who developed a moment matching method for the parameters. Tian [23]
constructed binomial and trinomial trees and showed how to compute the model parameters to obtain
weak convergence to the Black-Scholes model in the Lindeberg sense. Hull and White [11] enhanced
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the precision of the binomial model using a control variate technique, as it is common in Monte Carlo
simulations. Leisen and Reimer [15] modify the parameters of the binomial tree to minimize the oscillating
behavior of the value function. We review this technique in the following section.

2.1.1 The Method of Leisen and Reimer

As the convergence of the binomial tree based value to the limit is not monotone but rather oscillatory
(see Figure 1), the goal here is to achieve maximum precision with a minimum number of time steps N .
However, one can not expect that decreasing the step size ∆T = T/N will yield a more precise value when
using the methods by Cox-Ross-Rubinstein, Tian or Jarrow-Rudd. Leisen and Reimer [15] developed a
method in which the parameters u, d and p of the binomial tree can be altered in order to get better
convergence behavior.
Instead of choosing the parameters p, u and d to get convergence to the normal distribution Leisen-Reimer
suggest to use inversion formulae reverting the standard method – they use normal approximations to
determine the binomial distribution B(n, p). In particular, they suggest the following three inversion
formulae to replace p (probability of an up move) by p(d−).

Camp-Paulson-Inversion formula (for arbitrary n)

p(z) =
(
b

a

)2
3

√
(9a− 1)(9b− 1) + 3z

√
a(9b− 1)2 + b(9a− 1)2 − 9abz2

(9b− 1)2 − 9bz2
(5)

with a = n − j, b = j + 1 and z as input values for the standard normal distribution one uses in the
Black-Scholes formula.

Peizer-Pratt-Inversion formula 1 (n = 2j + 1)

p(z) =
1
2

+ sign(z)
1
2

√√√√1− exp

[
−
(

z

n+ 1
3

)2(
n+

1
6

)]
(6)

Peizer-Pratt-Inversion formula 2 (n = 2j + 1)

p(z) =
1
2

+ sign(z)
1
2

√√√√√1− exp

−( z

n+ 1
3 + 1

10·(n+1)

)2(
n+

1
6

) (7)

Then the model parameters are defined by

u = e(rd−rf )∆t p(d+)
p(d−)

, (8)

d =
e(rd−rf )∆t − p(d−)u

1− p(d−)
, (9)

d± =
ln S0

K + (rd − rf ± 1
2σ)T

σ
√
T

. (10)

Using this method, Leisen and Reimer observe much better convergence behavior.
To compute the Greeks, one can easily use approximations for delta, gamma and theta directly from the
tree if the tree satisfies u = 1/d, as for example in the CRR model. Let ∆T = T/N be the step size of
an option with maturity T and

V i
n, i = 0, . . . , n,
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be the value of the option at time n∆T , n ≤ N , if the underlying is Si
n = Suidn−i. Then the approxi-

mations are given by

∆ ≈ V 1
1 − V 0

1

S(u− d)
(11)

Γ ≈
V 2

2 −V 1
2

S(u2−1) −
V 1

2 −V 0
2

S(1−d2)

S(u2 − d2)
(12)

Θ ≈ V 0
0 − V 1

2

2∆T
. (13)

Vega, Volga and the Rhos can be computed using the difference quotients in Tables 2 and 3, Vanna
based on Equation (4). Leisen-Reimer trees do not satisfy u = 1/d. Nevertheless, delta and gamma
can be computed as described above. Theta needs to be determined numerically since at 2∆T we have
S1

2 = Sud 6= S for the value.

2.2 Finite Differences

The implementation we use for finite differences is essentially based on the PREMIA2 project [18] or
Andersen and Brotherton-Ratcliff [1].
The value u(t,Xt = log(St)) of a European style option in the Black-Scholes model obeys the PDE ∂u

∂t (t, x) + σ2

2
∂2u
∂x2 (t, x) + (rd − rf − σ2

2 )∂u
∂x (t, x)− rdu(t, x) = 0 in [0, T )× IR,

u(T, x) = ψ(exp(x)),∀x ∈ IR.
,

where ψ is the payoff at maturity T .

Let x = log(S0). Then we let the log spot range in D
∆= [x − l, x + l] with a suitably chosen l, usually

about 3 to 4 standard deviations. We discretize the range using the grid {xi} defined by

xi
∆= x− l +

2il
M
, for 1 ≤ i ≤M − 1.

We approximate the differential operator

Aφ
∆=

1
2
σ2 ∂

2φ

∂x2
+ (rd − rf −

σ2

2
)
∂φ

∂x
− rdφ

by a discrete operator Ah

Ahuh(t, xi) =
σ2

2
∂2uh

∂x2
(t, xi) + (rd − rf −

σ2

2
)
∂uh

∂x
(t, xi)− rduh(t, xi),

where the functions uh(t, ·) are defined by

∂2uh

∂x2
(t, xi) =

1
h2

(uh(t, xi+1)− 2uh(t, xi) + uh(t, xi−1)),

∂uh

∂x
(t, xi) =

1
2h

(uh(t, xi+1)− uh(t, xi−1)).
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Now we determine uh(t, xi), (0 ≤ i ≤M) such that for 0 ≤ t ≤ T, 1 ≤ i ≤M − 1 the conditions

d
dtuh(t, xi) +Ahuh(t, xi) = 0,

uh(T, xi) = ψ(xi),

uh(t, x− l) = ψ(x− l),

uh(t, x+ l) = ψ(x+ l)

(14)

hold. We let uh(t) ∆= (uh(t, x1), . . . , uh(t, xM−1))T and

α
∆=

σ2

2h2
− 1

2h
(rd − rf −

σ2

2
),

β
∆= −σ

2

h2
− rd,

γ
∆=

σ2

2h2
+

1
2h

(rd − rf −
σ2

2
).

Then we can write the operator Ah applied to uh(t, ·) as Ahuh(t, ·) = Mhuh(t) + vh, where

Mh =



β γ 0 · · · 0 0

α β γ 0 · · · 0

0 α β γ · · · 0

0
...

. . . . . . . . .
...

0 0 · · · α β γ

0 0 0 · · · α β


, vh =



ψ(x− l)α

0
...

0

ψ(x+ l)γ


. (15)

For the time-discretization we use the standard-θ-scheme (θ ∈ [0, 1]). We choose the step size k such that
T = Nk and construct the approximation

uh,k(t, x) =
N∑

n=0

un
h(x)1[nk,(n+1)k[(t),

where u0
h, . . . , u

N
h satisfy the equations

uN
h = ψh,

un
h(x− l) = ψ(x− l) for 0 ≤ n ≤ N − 1,

un
h(x+ l) = ψ(x+ l) for 0 ≤ n ≤ N − 1,

un+1
h −un

h

k +Ah(un+1
h + θ(un

h − un+1
h )) = 0 for 0 ≤ n ≤ N − 1.

(16)

For θ = 0 we obtain the fully explicit scheme, for θ = 1 the fully implicit scheme and for θ = 1
2 the

so-called Crank-Nicholson scheme.
In the explicit case θ = 0 the definition of Ah reduces the approximation scheme (16) to∣∣∣∣∣∣∣∣∣

uN
h = ψ

for 1 ≤ n ≤M − 1 :

un
h(xi) = p1u

n+1
h (xi−1) + p2u

n+1
h (xi) + p3u

n+1
h (xi+1),
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where

p1 = k

(
σ2

2h2
− b

2h

)
, p2 = 1− k

(
rd +

σ2

h2

)
, p3 = k

(
σ2

2h2
+

b

2h

)
, (17)

and b = rd − rf − 1
2σ

2. The scheme is stable if k ≤ h2

σ2+(rd−rf )h2 .
In all other cases 1 ≥ θ > 0 we need to solve a system of linear equations at each time step

Muk,h(jk, ·) = Nuk,h((j + 1)k, ·)

where the tri-diagonal matrices M and N take the form

b1 c1 0 · · · 0 0

a2 b2 c2 0 · · · 0

0 a3 b3 c3 · · · 0

0
...

. . . . . . . . .
...

0 0 · · · aM−1 bM−1 cM−1

0 0 0 · · · aM bM


.

M is given by

ai = θk(
b

2h
− σ2

2h2
), bi = 1 + θk(r +

σ2

h2
), ci = −θk( b

2h
+

σ2

2h2
),

and N is given by

ai = (1− θ)k(
σ2

2h2
− b

2h
), bi = 1− (1− θ)k(r +

σ2

h2
), ci = (1− θ)k(

b

2h
+

σ2

2h2
).

Solving a system of equations of the kind Mu = v, where u and v are M -dimensional vektors can be
carried out with the Gauss-Seidel-Factorisation, which is based on the fact that a regular matrix can be
decomposed into the product M = LU with a lower triangular matrix L and an upper triangular matrix
U whose diagonal entries are all equal to 1. The solution of a system of the form LUz = v will be done
in two steps Ly = v,Uz = y.
One realizes that if M is triangular, then L and U are triangular as well and hence we only need to find
the upper diagonal of U and the two diagonals of L. The computation of L,U and v happens in the
same step ∣∣∣∣∣∣∣∣∣∣∣∣

b′M
∆= bM , yM

∆= vM

For 1 ≤ i ≤M − 1, i increasing:

b′i = bi − ciai+1/b
′
i+1,

yi = vi − ciyi+1/b
′
i+1.∣∣∣∣∣∣∣∣∣

u1 = y1/b
′
1

For 2 ≤ i ≤M, i decreasing:

zi = (yi − aiui−1)/b′i.

Remark. We require the pivot-elements bi to be non-zero.
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To determine the Greeks it appears advantageous to use the information contained in the grid rather
than the formulae in Tables 2 and 3 to compute approximations for delta, gamma and theta through

∆h =
u0

h(exp(x+ h))− u0
h(exp(x− h))

S(eh − e−h)
, (18)

Γh =
u0

h(exp(x+h))−u0
h(exp(x))

S(eh−1)
− u0

h(exp(x))−u0
h(exp(x−h))

S(1−e−h)

S(eh − e−h)
, (19)

Θh =
uk

h(ex)− u0
h(ex)

k
. (20)

2.3 Analytic Approximations

Since there is no closed form solution available for American style call or put options and the need for
fast computation is eminent, several analytic approximations have been developed. However, one needs
to be careful using these for the computation of derivatives, as it is well-known that approximating a
function does not necessarily imply that the approximation is also a good approximation of the function’s
derivatives.

2.3.1 Approximation by Barone-Adesi and Whaley

We outline the method to compute the value function for American style options proposed by
MacMillan [16] and Barone-Adesi and Whaley [2].
We introduce the notation vS = ∂v

∂S , vSS = ∂2v
∂S2 and vt = ∂v

∂t and X for the strike. Furthermore, we let
V (S, T ) be the value of an American style options and v(S, T ) be the value of a European style option.
The values of calls will be denoted by C(S, T ) and c(S, T ), the values of puts by P (S, T ) and p(S, T )
respectively. The key idea for the approximation rests on the fact that since the Black-Scholes PDE holds
for both the European and the American style option, the early-exercise-premium

εC(S, T ) = C(S, T )− c(S, T ) (21)

must satisfy

1
2
σ2S2εSS − rdε+ (rd − rf )SεS + εt = 0. (22)

Using the abbreviations τ ∆= T−t,K(τ) ∆= 1−e−rdτ ,M
∆= 2rd

σ2 , N
∆= 2(rd−rf )

σ2 and εC(S,K) ∆= K(τ)f(S,K)
Equation (22) implies

S2fSS +NSfS −
M

K
f − (1−K)MfK = 0. (23)

The authors now argue that the term (1−K)MfK = 0 is neglegible for small and large τ1. The resulting
ordinary differential equation

S2fSS +NSfS −
M

K
f = 0 (24)

has the general solution

f(S) = a1S
q1 + a2S

q2 , (25)

where the roots of the characteristic polynomial are given by
1This hints at a weaker quality of the method for medium length maturities.
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q1,2 =
−(N − 1)∓

√
(N − 1)2 + 4M

K

2

with q1 < 0 and q2 > 0 since M
K > 0. Since q1 < 0, a1 6= 0 would imply limS→0 f(S) = ∞, whence we

must have a1 = 0.
Using equation

C(S, τ) = c(S, τ) +Ka2S
q2 (26)

we can derive restrictions on a2, namely

1. for S = 0 Equation (26) implies C(S, T ) = 0.

2. C(S, τ) must be increasing in S. Therefore, a2 > 0.

3. the r.h. side of (26) must not intersect the line S −X, but only touch it in at the optimal exercise
level S∗. For S ≤ S∗ the value of the American call is given by Equation (26). For S > S∗ its value
is S −X.

In order to find S∗ we differentiate

S∗ −X = c(S∗, τ) +Ka2(S∗)q2 . (27)

with respect to S∗ and obtain

1 = e(b−rd)τN (d1(S∗)) +Kq2a2(S∗)q2 , (28)

where d1(S∗) = ln S∗
X +(b+ σ2

2 )τ

σ
√

τ
and b = rd − rf .

Then one solves Equation (28) for a2 and plugs the result into Equation (27) to reach

S∗ −X = c(S∗, τ) +
1− e(b−rd)τN [d1(S∗)]

q2
, (29)

where S∗ is the only unknown and can be easily found numerically. As a result we get

C(S, τ) =

 c(S, τ) +A2(
S

S∗
)q2 , if S < S∗

S −X, otherwise,
(30)

where A2 = (1−e(b−rd)τN [d1(S
∗)])

q2
.

Remark: Note that A2 is only positive if b < rd, i.e. rf > 0, which is usually satisfied.
Similarly for puts Equation (21) holds in the form

εP (S, T ) = P (S, T )− p(S, T ). (31)

Here in Equation (25) we need a2 = 0 and hence

P (S, τ) = p(S, τ) +Ka1S
q1 . (32)

To get a1 we employ the optimal exercise level S∗∗ defined by

X − S∗∗ = p(S∗∗, τ)− 1− e(b−rd)τN [−d1(S∗∗)]
q1

. (33)
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The American style put is then approximated by

P (S, τ) =

 p(S, τ) +A1(
S

S∗∗
)q1 , if S > S∗∗

X − S, otherwise,
(34)

where A1 = − (1−e(b−rd)τN [−d1(S
∗∗)])

q1
.

3 Comparison of the Methods

Now we compare the efficiency of the different valuation procedures outlined before. We consider a Euro
call USD put option with a strike of 0.9000, 3 months maturity. Market data are assumed to be 10%
volatility, 3.5% Euro interest rate, 2% USD interest rate. In this scenario, the value of the European and
American put are identical, so the European put can be taken as a benchmark for the American style
value and Greeks. The value of the American call will be strictly larger than the value of the European
call.
The parameters for Leisen-Reimer binomial trees are N bin = 2000 time steps, the parameters for the
finite differences are Nfd

S = 1130 spot steps, Nfd
T = 1130 time steps and θ = 0.5 (Crank-Nicholson)

We compare these methods with the approximation by Barone-Adesi and Whaley (BAW) and the Black-
Scholes method.

3.1 Value Function

Figure 2 shows the value functions of a call as a function of the current spot. One of the weaknesses of
BAW is that the precision can’t be improved by changing a parameter.
We observe furthermore in Table 4 that in the BAW method the exercise boundary will be reached too
early as compared to the binomial trees and finite differences. The computation of the Greeks will inherit
this feature, whence we can’t expect high accuracy for the Greeks using BAW near the optimal exercise
boundary.

Spot BS BT BAW FD

0.97 0.06765478 0.07007488 0.0700066 0.07007446

0.971 0.06857433 0.0710532 0.07100095 0.07105275

0.972 0.06949664 0.0720353 0.072 0.07203482

0.973 0.07042164 0.07302112 0.073 0.07302061

0.974 0.07134923 0.07401058 0.074 0.07401004

0.975 0.07227935 0.07500358 0.075 0.07500305

0.976 0.0732119 0.07600002 0.076 0.076

0.977 0.07414681 0.077 0.077 0.077

0.978 0.075084 0.078 0.078 0.078

Table 4: Comparison of the values in USD using the methods near the optimal exercise boundary

The advantage of BAW is its speed, the method is superior if you need to price a vanilla far away from
the optimal exercise boundary.
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3.2 Delta and Gamma

We take these Greeks directly from the PDE grid or the tree as the information comes at no extra
computational cost. Figures 3 and 4 show the expected behavior for BAW: delta approaches 1 to quickly
and gamma approaches 0 to quickly. The Leisen-Reimer trees and finite differences yield equally good
values for delta and gamma. However, we observed that the values of gamma near the optimal exercise
boundary tend to be more stable using Leisen-Reimer trees.

3.3 Theta

In BAW and LR, theta has to be computed with difference quotients, in the finite differences we can take
it from the grid. This implies about twice or trice the computational cost for trees depending on whether
we use 1

h (f(x) − f(x − h)) or 1
2h (f(x + h) − f(x − h)). The accuracy of LR and finite differences ap-

pears identical (see Figure 5), so we would recommend finite differences to save on the computational cost.

The following Greeks can only be determined using the difference quotients in Tables 2 and 3. The choice
of the parameter h is crucial. If we choose it too small, then the lack of precision in the value function
will lead to a possibly larger error in the hedge parameter.

3.4 Rho (domestic) and Rho (foreign)

We compute these Greeks with the difference formulae of first order to keep the computation cost un-
der control. In particular, we only need one more computation of rd − h or rf + h to compute the
approximations

ρd ≈ 1
h

(f(rd)− f(rd − h)) and (35)

ρf ≈ 1
h

(f(rf + h)− f(rf )). (36)

We take h = 0.01. Figures 7 and 8 show the approximations for ρd and ρf . Even for step size of
N bin = 100 in the binomial tree we obtain good approximations for these Greeks. Finite differences tend
to oscillate for this grid size as illustrated in Figure 6, so that we would recommend LR trees for the rhos.

3.5 Vega and Volga

For the second derivative we need to choose an approximation from Table 3. Noticeably, the approxima-
tions of second order work better than the one of order four. We had specially good experience using

Volga ≈ 2f(x− 2h)− f(x− h)− 2f(x)− f(x+ h) + 2f(x+ 2h)
14h2

. (37)

with h = 0.05. A smaller h would require more computational cost for the trees and finite differences, since
the resulting value function would have to have higher precision. For small step size we find the precision
of the LR trees superior to the finite differences, as illustrated in Figure 9 with N bin = Nfd

T = Nfd
S = 100.

Therefore we recommend LR trees for volga. To compute vega it is advisable to use the values already
obtained for volga, i.e.

Vega ≈ f(x− 2h)− f(x+ 2h)
4h

. (38)

For small step sizes we find similar behavior for the vega as we found for volga. Therefore, we recommend
LR trees to compute vega. The results are displayed in Figures 10 and 11.
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3.6 Vanna

We approximate vanna using the second order derivative

f(S + hS , σ + hv)− f(S − hS , σ + hv)− f(S + hS , σ − hv) + f(S − hS , σ − hv)
4hShv

, (39)

where hS denotes the step size of the spot S and hv the step size of the volatility σ. We take hS = 0.003
and hv = 0.03. Compared to the other Greeks, vanna requires very high accuracy in the finite difference
based method, to avoid oscillatory behavior as illustrated in Figure 12. LR trees turn out to be the
obviously better method here, although we need a fine grid near the optimal exercise boundary.

4 Summary

We analyzed three commonly used methods to determine the value of American style options with regard
to their efficiency to compute the hedge parameters (Greeks), in particular: delta, gamma, theta, vega,
vanna, volga, domestic and foreign rho. These were the analytic approximation by Barone-Adesi and
Whaley, the finite difference method with Crank-Nicholson scheme and the binomial model in the variant
of Leisen and Reimer.
The method by Barone-Adesi and Whaley is working with a fixed an non-improvable precision. Moreover,
it lacks precision near the optimal exercise boundary. Its only strength lies in its speed.
We confirmed that using finite differences will deliver approximations for delta, gamma and theta directly
from the grid without additional computational cost. Except for theta we obtain the same result for the
binomial trees. Leisen Reimer trees yield more precise results for delta and gamma.
The remaining Greeks can not be taken from the grid, but have to be computed using finite difference
quotients. We observed that Leisen Reimer trees are the superior method.
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Figure 1: Convergence Behavior of Tree Models with parametersS = .81, K = .9, T = 1, rd = .02, rf = .035,
σ = .3
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Figure 2: American call with K = .9, T = 3m, rd = .02, rf = .035, σ = .1
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Figure 3: Delta of an American call with K = .9, T = 3m, rd = .02, rf = .035, σ = .1



Greeks for American Options 19

Figure 4: Gamma of an American call with K = .9, T = 3m, rd = .02, rf = .035, σ = .1
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Figure 5: Theta of an American call with K = .9, T = 3m, rd = .02, rf = .035, σ = .1
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Figure 6: Behavior for the domestic rho of an American call with Nbin = Nfd
t = Nfd

S =100
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Figure 7: Rho (domestic) of an American call wth K = .9, T = 3m, rd = .02, rf = .035, σ = .1
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Figure 8: Rho (foreign) of an American call with K = .9, T = 3m, rd = .02, rf = .035, σ = .1
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Figure 9: Behavior of an American call volga with Nbin = Nfd
T = Nfd

S = 100
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Figure 10: Vega of an American call with K = .9, T = 3m, rd = .02, rf = .035, σ = .1
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Figure 11: Volga of an American call with K = .9, T = 3m, rd = .02, rf = .035, σ = .1
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Figure 12: Behavior of an American call vanna with Nbin = Nfd
T = Nfd

S = 100
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Figure 13: Vanna of an American call with K = .9, T = 3m, rd = .02, rf = .035, σ = .1


	Introduction
	Option Price Sensitivities
	Approximation by Finite Difference Quotients

	Computation Methods
	Binomial Trees
	The Method of Leisen and Reimer

	Finite Differences
	Analytic Approximations
	Approximation by Barone-Adesi and Whaley


	Comparison of the Methods
	Value Function
	Delta and Gamma
	Theta
	Rho (domestic) and Rho (foreign)
	Vega and Volga
	Vanna

	Summary

