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Abstract

No front-o�ce software can survive without providing derivatives of options prices
with respect to underlying market or model parameters, the so called Greeks. We
present a list of common Greeks and exploit homogeneity properties of �nancial
markets to derive relationships between Greeks out of which many are model-
independent. We apply our results to European style options, rainbow options,
path-dependent options as well as options priced in Heston's stochastic volatility
model and show shortcuts to avoid exorbitant and time-consuming computations
of derivatives which even strong symbolic calculators fail to produce.

�partially a�liated to Delft University, by support of NWO Netherlands
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1 Introduction

Based on homogeneity of time and price level of a �nancial product we can derive
relations for the options sensitivities, the so-called \Greeks". The basic market
model we use is the Black-Scholes model with stocks paying a continuous dividend
yield and a riskless cash bond. This model supports the homogeneity properties
which are valid in general, but its structure is so simple, that we can concentrate
on the essential statements of this paper. We will also discuss how to extend out
work to more general market models.

We list the commonly used Greeks and their notations. We do not claim this list
to be complete, because one can always de�ne more derivatives of the option price
function.

First of all we analyze the homogeneity of a �nancial market, consisting of one stock
and one cash bond. The techniques we present are easily expanded to the higher
dimensional case as we show later on.

In addition we look at the Greeks of European options in the Black-Scholes model.
Essentially it turns out, that one only needs to know two Greeks in order to calculate
all the other Greeks without di�erentiating.

Another interesting example is a European derivative security depending on two
assets. For such rainbow options the analysis of the risk due to changing correlation
of the two assets is very important. We will show how this risk is related to
simultaneous changes of the two underlying securities.

There are several applications of these homogeneity relations.

1. It helps saving time in computing derivatives.

2. It produces a robust implementation compared to Greeks via di�erence quo-
tients.

3. It allows to check the quality and consistency of Greeks produced by �nite-
di�erence-, tree- or Monte Carlo methods.

4. It admits a computation of Greeks for Monte Carlo based values.

5. It shows relationships between Greeks which wouldn't be noticed merely by
looking at di�erence quotients.
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1.1 Notation

S stock price or stock price process
B cash bond, usually with risk free interest rate r
r risk free interest rate
q dividend yield (continuously paid)
� volatility of one stock, or volatility matrix of several stocks
� correlation in the two-asset market model
t date of evaluation (\today")
T date of maturity
� = T � t maturity of an option
x stock price at time t
f(�) payo� function
v(x; t; : : :) value of an option
k strike of an option
l level of an option
vx partial derivation of v with respect to x (and analogous)

The standard normal distribution and density functions are de�ned by

n(t)
�
=

1p
2�

e�
1
2 t

2

(1)

N (x)
�
=

Z x

�1
n(t) dt (2)

n2(x; y; �)
�
=

1

2�
p
1� �2

exp

�
�x2 � 2�xy + y2

2(1� �2)

�
(3)

N2(x; y; �)
�
=

Z x

�1

Z y

�1
n2(u; v; �) du dv (4)

See http://www.MathFinance.de/fronto�ce.html for a source code to compute N2.
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1.2 The Greeks

Delta � vx
Gamma � vxx
Theta � vt
Rho � vr in the one-stock model
Rhor �r vr in the two-stock model
Rhoq �q vq
Vega � v�
Kappa � v� correlation sensitivity (two-stock model)

Greeks, not so commonly used:

Leverage � x
v
vx sometimes 
, sometimes called \gearing"

Vomma �0 v��
Speed vxxx
Charm vx�
Color vxx�
Forward Delta �F vF
Driftless Delta �dl �eq�

Dual Theta Dual� vT
Strike Delta �k vk
Strike Gamma �k vkk
Level Delta �l vl
Level Gamma �l vll
Beta �12

�1
�2
� two-stock model

2 Fundamental Properties

2.1 Homogeneity of Time

In most cases the price of the option is not a function of both the current time
t and the maturity time T , but rather only a function of the time to maturity
� = T � t implying the relations

� = vt = �v� = �vT = �Dual� (5)

This relationship extends naturally to the situation of options depending on several
intermediate times such as compound or Bermuda options.

2.2 Scale-Invariance of Time

We may want to measure time in units other than years in which case interest rates
and volatilities, which are normally quoted on an annual basis, must be changed
according to the following rules for all a > 0.

� ! �

a
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r ! ar

q ! aq

� ! p
a� (6)

The option's value must be invariant under this rescaling, i.e.,

v(x; �; r; q; �; : : :) = v(x;
�

a
; ar; aq;

p
a�; : : :) (7)

We di�erentiate this equation with respect to a and obtain for a = 1

0 = ��+ r�+ q�q +
1

2
��; (8)

a general relation between the Greeks theta, rho, rhoq and vega. It extends naturally
to the case of multiple assets and multiple intermediate dates.

2.3 Scale Invariance of Prices

The general idea is that value of securities may be measured in a di�erent unit, just
like values of European stocks are now measured in Euro instead of in-currencies.
Option contracts usually depend on strikes and barrier levels. Rescaling can have
di�erent e�ects on the value of the option. Essentially we may consider the following
types of homogeneity classes. Let v(x; k) be the value function of an option, where
x is the spot (or a vector of spots) and k the strike or barrier or a vector of strikes
or barriers. Let a be a positive real number.

De�nition 1 (homogeneity classes) We call a value function k-homogeneous
of degree n if for all a

v(ax; ak) = anv(x; k): (9)

The value function of a European call or put option with strike K is then K-
homogeneous of degree 1, a power call with strike K and cap C is both K-
homogeneous of degree 2 and C-homogeneous of degree 0, a double barrier call
with strike K and barriers B = (L;H) is K-homogeneous of degree 1 and B-
homogeneous of degree 0. We will call an option strike-de�ned, if there is just one
strike k and the value function is k-homogeneous of degree 1 and level-de�ned if
there is just one level l and the value function is l-homogeneous of degree 0, e.g. a
digital cash call.

2.3.1 Strike-Delta and Strike-Gamma

For a strike-de�ned value function we have for all a; b > 0

abv(x; k) = v(abx; abk): (10)
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We di�erentiate with respect to a and get for a = 1

bv(x; k) = bxvx(bx; bk) + bkvk(bx; bk): (11)

We now di�erentiate with respect to b get for b = 1

v(x; k) = xvx + xvxxx+ xvxkk + kvk + kvkxx+ kvkkk (12)

= x�+ x2� + 2xkvxk + k�k + k2�k: (13)

If we evaluate equation (11) at b = 1 we get

v = x�+ k�k: (14)

We di�erentiate this equation with respect to k and obtain

�k = xvkx +�k + k�k; (15)

kxvkx = �k2�k: (16)

Together with equation (13) we conclude

x2� = k2�k: (17)

2.3.2 Level-Delta and Level-Gamma

For a level-de�ned value function we have for all a; b > 0

v(x; l) = v(abx; abl): (18)

We di�erentiate with respect to a and get at a = 1

0 = vx(bx; bl)bx+ vl(bx; bl)bl: (19)

If we set b = 1 we get the relation

�x+�ll = 0: (20)

Now we di�erentiate equation (19) with respect to b and get at b = 1

0 = vxxx
2 + 2vxlxl + vll l

2: (21)

One the other hand we can di�erentiate the relation between delta and level-delta
with respect to l and get

vxlx+ l�l +�l = 0: (22)

Together with equation (21) we conclude

x2� + x� = l2�l + l�l: (23)



Option Price Sensitivities 7

3 European Options in the Black-Scholes

Model

In this section we analyze the European claim in the Black-Scholes model

dSt = St[(r � q)dt+ �dWt]: (24)

This situation has a simple structure which allows us to obtain even more relations
for the Greeks. We assume that the stock pays a continuous dividend yield with
rate q. It can also be seen as a foreign exchange rate and q denotes the risk free
interest rate in the foreign currency.

3.1 Scale Invariance of Prices

A European option is described by its payo� function and the price of this option
in the Black-Scholes model is given by

v(x; � ) = e�r�E�[f(S(� )) j S(0) = x]: (25)

The expectation is taken under the risk-neutral measure P �. Now we de�ne a set
of European options related to this option by a payo� f(x

a
) parameterized by a

positive real number a. We denote their value function by

u(x; �; a) = e�r�E�
�
f

�
S(� )

a

� ���� S(0) = x

�
: (26)

We now di�erentiate the equation u(x
a
; �; 1) = u(x; �; a) with respect to a and get

�1
a2

xux(
x

a
; �; 1) = e�r�E�

�
f 0
�
S(� )

a

� �S(� )
a2

���� S(0) = x

�
: (27)

If we set a = 1 and use v(x; � ) = u(x; �; 1), we obtain the relation

x� = E�[f 0(S(� ))S(� )e�r� j S(0) = x] (28)

Remark 1 In this calculation we used, that the payo� function is di�erentiable.
This condition can be relaxed by the assumption, that there exists a sequence of dif-
ferentiable functions fn, which converges P � almost surely pointwise to the function
f. For instance, f can have a �nite number of jumps and be continuous between
them. This argumentation is always valid, whenever we di�erentiate the payo�
function under the expectation.

3.1.1 Interest Rate Risk

We di�erentiate (25) with respect to r and obtain:

vr = (�� )e�r�E�[f(S(� )) j X(0) = x]

+e�r�E�[f 0 (S(� )) S(� )� j S(0) = x] (29)

= ��v + �E�[f 0(S(� ))S(� )e�r� j S(0) = x] (30)



8 Rei�, O. and Wystup, U.

Comparing this with equation (28) we �nd the following relation for the Greeks

� = �� (v � x�): (31)

This result is not surprising, since v�x� is the amount of money one has to invest
in the cash bond if one hedges the option by delta hedge. On the other hand the
interest rate risk of a zero-coupon bond is (minus) the amount of money invested
times the duration.

3.1.2 Rates Symmetry

Di�erentiating equation (25) with respect to the dividend yield q leads to

vq = e�r�E�[f 0(S(� ))S(� )(�� )jS(0) = x]; (32)

and a comparison of this with equation (30) to homogeneity relation:

� + �q = ��v: (33)

3.2 Black-Scholes PDE

Lemma 1 For all European contingent claims the following equation (Black-Scholes
PDE) holds.

�v� � rv + (r � q)xvx +
1

2
�2x2vxx = 0 (34)

Remark 2 From this lemma we obtain the following relation for the Greeks.

rv = � + (r � q)x�+
1

2
x2�2�: (35)

3.2.1 Dual Black-Scholes PDEs

One can combine the general results for the dual Greeks with the Black-Scholes
PDE and obtains the dual Black-Scholes equations:

qv = � + (q � r)k�k +
1

2
�2k2�k (36)

rv = � + (q � r + �2)l�l +
1

2
�2l2�l (37)

3.3 Results for European Claims in the Black-Scholes Model

We found a lot of relations for European options. Of course, the general relations
hold and additionally we proved some more relations for European options in the
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Black-Scholes model. We list all these relations now.

0 = �� + r� + q�q +
1

2
�� scale invariance of time (38)

v = x�+ k�k log-price homogeneity and strikes (39)

x2� = k2�k log-price homogeneity and strikes (40)

x� = �l�l log-price homogeneity and levels (41)

x2� + x� = l2�l + l�l log-price homogeneity and levels (42)

� = �� (v � x�) Interest rate risk (43)

� + �q = ��v rates symmetry (44)

rv = � + (r � q)x�+
1

2
�2x2� Black-Scholes PDE (45)

qv = � + (q � r)k�k +
1

2
�2k2�k Dual Black-Scholes (46)

rv = � + (q � r + �2)l�l +
1

2
�2l2�l Dual Black-Scholes (47)

Lemma 2 From the relations above we conclude

� = ��k�k; (48)

�q = ��x�: (49)

� = ��x2�; (50)

Proof. Equation (48) follows from (39) and (43). From (43) and (44) one eas-
ily obtains (49). The proof of (50) starts with (38) and equation (45) times � .
Eliminating �� yields

r� + q�q +
1

2
�� = �rv� + (r � q)�x�+

1

2
�2�x2� (51)

Using (43) to get rid of x� we get:

q�q +
1

2
�� = �q� � qv� +

1

2
�2�x2� (52)

All terms containing q vanish because of (44) which establishes equation (50).
An interpretation of equation (50) can be found in [6]. We would like to point out
that this relationship is based on a fact concerning the normal distribution function,
namely de�ning

n(t; �)
�
=

1p
2��2

e�
t2

2�2 ; (53)

N (x; �)
�
=

Z x

�1
n(t; �) dt; (54)

one can verify that

�@2xxN (x; �) = @�N (x; �): (55)
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There are surely more relations one can prove, but the next theorem will give a
deeper insight into the relations of the Greeks.

Theorem 1 If the price and two Greeks g1; g2 of a European option are given with

g1 2 G1 = f�;�k;�l; �; �qg; (56)

g2 2 G2 = f�;�k;�l;�;�g; (57)

then all the other Greeks (2 G1 [ G2) can be calculated. Furthermore, if � and
another Greek from G2 is given, it is also possible, to determine all other Greeks.

Proof. The relations (38) to (45) are independent of each other. The relations
(46) to (49) are conclusions. To get a overview over all these relations, we list the
appearance of each Greek in all these relations. With X or O we denote, that the
marked Greek appears in the relation. The relations marked with X show, that
there is a relation between Greeks of G1 and G2 and the O shows, that this relation
concerns only the Greeks of one set.

Greeks 2 G1 Greeks 2 G2

equation v � �k �l � �q � �k �l � �

(38) X X X X

(39) O O O
(40) O O

(41) O O
(42) X X X X
(43) O O O

(44) O O O
(45) X X X X

(46) X X X X
(47) X X X X

(48) O O
(50) O O

(49) O O

Let us now assume the option price and one Greek from the set G1 are given. Then
a look at the table shows that all Greeks of the set G1 can be evaluated. If all
Greeks of the set G1 are known and additionally one Greek of the set G2 is given,
all other Greeks can be determined. One the other hand, only eight equations are
independent, so the knowledge of two Greeks is also the minimum knowledge one
needs to determine all ten Greeks. This is the proof of the �rst statement.

If � and another Greek from G2 is given, then it is always possible to determine
one Greek of the set G1 and one applies the part of this theorem already proved.
If �;�k or �l is given, one can use one of the Black-Scholes equations (45) to (47).
If vega � is given, one can use (50) to get �.
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4 Examples for the One-Dimensional Case

4.1 Vanilla Calls and Puts in a Foreign Exchange Market

In the special case of plain vanilla calls and puts in a foreign exchange market all
relations for the Greeks presented above are valid. These formulas are well known
and can be found in [7].

4.2 Compound Options

A compound option is an option on an option, i.e., a call on a call or a call on a put
or a put on a call or a put on a put. For comparison you may consult [1].

4.2.1 abbreviations

� K: strike of the underlying option

� k: strike of the compound option

� �: +1 (-1) is the underlying option is a call (put)

� !: +1 (-1) is the compound option is a call (put)

� ��
�
= r�q

�
� �

2

� St = S0e
�Wt+���t: price of the underlying at time t

� d��
�
=

ln
St
K
+����

�
p
�

� d�
�
=

ln
S0
K
+���T

�
p
T

� Vanilla(St;K; �; r; q; �; �) = �(Ste�q�N (�d�+) �Ke�r�N (�d��))

� H(x)
�
= Vanilla(S0e

�
p
tx+���t;K; �; r; q; �; �)� k

� X: the unique number satisfying H(X) = 0

� e
�
= X

p
T+

p
td�p

�

The value of a compound option is given by

v(S0;K; k; T; t; �; r; q; �; !) (58)

= e�rt
Z y=+1

y=�1

h
!
�
Vanilla

�
S0e

�
p
ty+���t;K; �; r; q; �; �

�
� k
�i+

n(y) dy

= �!S0e
�qTN2

 
��!(X � �

p
t); �d+;!

r
t

T

!

� �!Ke�rTN2

 
��!X; �d�;!

r
t

T

!

� !ke�rtN (��!X):



12 Rei�, O. and Wystup, U.

Delta The value function v is (K; k)-homogeneous of degree 1, whence v has the
representation

v = S0
@v

@S0
+K

@v

@K
+ k

@v

@k
; (59)

and the deltas can be just read o�, e.g.,

@v

@S0
= �!e�qTN2

 
��!(X � �

p
t); �d+;!

r
t

T

!
: (60)

Gamma. To compute gamma, we need to know the derivative of X, which is
actually a function X = X(S0;K; k; T; t; �; r; q; �). Although we can not
determine this function explicitly, we can compute its derivatives explicitly
using implicit di�erentiation. We obtain

@X

@S0
= �

@H
@S0
@H
@x

= � �e�q�N (�d�+)e
�
p
tX+��� t

�e�q�N (�d�+)S0e
�
p
tX+��� t�

p
t
=

�1
S0�

p
t
; (61)

and hence for gamma

@2v

@S20
=

e�qT

�S0

�
1p
t
n(X � �

p
t)N (�d�+) +

!p
T
n(d+)N (��!e)

�
: (62)

Theta. To �nd theta we use the Black-Scholes PDE and get

� = �!qS0e
�qTN2

 
��!(X � �

p
t); �d+;!

r
t

T

!
(63)

� �!rKe�rTN2

 
��!X; �d�;!

r
t

T

!

� !rke�rtN (��!X)

� �

2
S0e

�qT
�
1p
t
n(X � �

p
t)N (�d�+) +

!p
T
n(d+)N (��!e)

�
:

Intuitively, we deduce a formula for v� by just omitting the terms involving
t and obtain

�@v

@�
= �!qS0e

�qTN2

 
��!(X � �

p
t); �d+;!

r
t

T

!
(64)

� �!rKe�rTN2

 
��!X; �d�;!

r
t

T

!

� �

2
S0e

�qT !p
T
n(d+)N (��!e) :

We now extend the scale invariance of time equation (38) to

� =
�

t
v� � r

t
vr � q

t
vq � �

2t
v� ; (65)
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compare this formula with (63) and can instantly read o� vega and rho.

Vega.

@v

@�
= S0e

�qT
hp

tn(X � �
p
t)N (�d�+) + !

p
Tn(d+)N (��!e)

i
: (66)

Rho.

@v

@r
= �!TKe�rTN2

 
��!X; �d�;!

r
t

T

!
+ !tke�rtN (��!X)(67)

@v

@q
= ��!TS0e�qTN2

 
��!(X � �

p
t); �d+;!

r
t

T

!
: (68)

5 A European Claim in the Two-dimensional Black-

Scholes Model

5.1 Pricing of a European Option

Rainbow options are �nancial instruments which depend on several risky assets.
Many of them are very sensitive to changes of correlation. we call kappa (�) the
derivative of the option value v with respect to the correlation �.
The computational e�ort to compute the kappa is hard, even in a simple framework,
but in the Black-Scholes model with two stocks and one cash bond we �nd a cross-
gamma-correlation-risk relationship which can be used easily to �nd kappa.
Let the stock price processes S1 and S2 be described by

ln
S1(� )

S1(0)
= (r � q1 � 1

2
�21)� + �1W

1
� ; (69)

ln
S2(� )

S2(0)
= (r � q2 � 1

2
�22)� + �2�W

1
� + �2

p
1� �2W 2

� : (70)

W 1 andW 2 are two independent Brownian motions under the risk neutral measure.
The probability density for the distribution of S1(� ) is denoted by h1(x) and is given
by the log normal density:

h1(x) =
1p

2��21�

1

x
exp

�
� A2

2�21�

�
; (71)

A
�
= ln

�
x

S1(0)

�
� r� + q1� +

1

2
�21�: (72)

The equation for the second stock price process can be written as

ln
S2(� )

S2(0)
= (r � q2 � 1

2
�22)� +

�2�

�1

�
ln

�
S1(� )

S1(0)

�
� (r � q1 � 1

2
�21)�

�

+�2
p
1� �2W 2

� : (73)
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The conditional distribution of S2(� ) given S1(� ) is thus log-normal with density

h2(S2jS1(� ) = x)(y) =
1

y
p
2��22(1� �2)�

exp

�
� B2

2�22(1� �2)�

�
; (74)

B
�
=

�
ln

�
y

S2(0)

�
� r� + q2� +

1

2
�22� �

�2�

�1
A

�
: (75)

The joint distribution of S1(� ) and S2(� ) is given by the product of h1 and h2

h(x; y) = h1(x) � h2(S2(� ) j S1(� ) = x)(y): (76)

A European option with maturity � and payo� f(S1(� ); S2(� )) will be priced by

v = e�r�
1Z
0

1Z
0

h(x; y) � f(x; y)dxdy: (77)

5.2 Calculation of the Greeks

From the general pricing of a European claim in a two-dimensional Black-Scholes
market we can compute all the derivatives of the option price. We suppress the
arguments of the functions and we assume, that we are allowed to di�erentiate

under the integral. Therefore, we only have to di�erentiate the function ~h(x; y)
�
=

e�r�h(x; y) with respect to the parameters resulting into the equations

@�~h =
�

1� �2
E1 � �2

�1
E4 +

2�

1� �2
E6; (78)

@S1(0)
~h =

�1
S1(0)

E2 +
�2�

�1S1(0)
E5; (79)

@S2(0)
~h =

�1
S2(0)

E5; (80)

@�1
~h =

�1
�1

E1 � 2

�1
E3 + �1�E2 +

�2�

�21
E4 � �2��E5; (81)

@�2
~h =

�1
�2

E1 � 2

�2
E6 + �2�E5 � �

�1
E4; (82)

@q1~h = �E2 � �2��

�1
E5; (83)

@q2~h = �E5; (84)

@r~h = ��E1 � �E2 +

�
�2��

�1
� �

�
E5; (85)

@�~h = �(r + 1

�
)E1 � 1

�
E3 + (�r + q1 +

1

2
�21)E2 � 1

�
E6

+

�
�r + q2 +

1

2
�22 �

�2�

�1
(�r + q1 +

1

2
�21)

�
E5; (86)
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@S1(0)@S1(0)
~h =

�1
�21(1 � �2)�S1(0)2

E1 +
1

S1(0)2
E2 � 2

�21�S1(0)
2
E3

+
2�2�

�31�S1(0)
2
E4 � �2�

�1S1(0)2
E5

� 2�2

�21(1� �2)�S1(0)2
E6; (87)

@S1(0)@S2(0)
~h =

�

�1�2(1� �2)�S1(0)S2(0)
E1 � 1

�21�S1(0)S2(0)
E4

+
2�

�1�2(1� �2)�S1(0)S2(0)
E6; (88)

@S2(0)@S2(0)
~h =

�1
�22(1 � �2)�S2(0)2

E1 +
1

S2(0)2
E5

� 2

�22(1� �2)�S2(0)2
E6; (89)

where the terms Ei are de�ned by

E1
�
= ~h; (90)

E2
�
= ~h

�2A
2�21�

; (91)

E3
�
= ~h

�A2

2�21�
; (92)

E4
�
= ~h

�2BA
2�22(1� �2)�

; (93)

E5
�
= ~h

�2B
2�22(1� �2)�

; (94)

E6
�
= ~h

�B2

2�22(1� �2)�
: (95)

5.3 Conclusions

To obtain several relations between the Greeks one only has to do some linear
algebra in R6. Some results are

0 = �q1 + S1(0)��1 (96)

0 = �q2 + S2(0)��2 (97)

0 = q1�q1 + q2�q2 +
1

2
�1�1 +

1

2
�2�2 + r�r + �� (98)

0 = � � rv + (r � q1)S1(0)�1 + (r � q2)S2(0)�2

+
1

2
�21S1(0)

2�11 + ��1�2S1(0)S2(0)�12 +
1

2
�22S2(0)

2�22 (99)

� = �1�2�S1(0)S2(0)�12 (100)
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0 = ��� �1�1 + �21�S1(0)
2�11 (101)

0 = ��� �2�2 + �22�S2(0)
2�22 (102)

0 = �1�1 � �2�2 � �21�S1(0)
2�11 + �22�S2(0)

2�22 (103)

�r = �� (v � S1(0)�1 � S2(0)�2) (104)

0 = �v + �q1 + �q2 + �r (105)

Of course one can get more relations by combining some relations above. The
relations we have chosen to present are either similar to the one-dimensional case
or have another natural interpretation.

� (96) and (97). These relations are a justi�cation for the rough way to deal
with dividends. One subtracts the dividends from the actual spot price and
prices the option with this price and without dividends. This relation is not
e�ected by the two-dimensionality of the problem.

� (98). This is the two-dimensional version of the general invariance under
time scaling.

� (99). This is the Black-Scholes di�erential equation. This relation must hold,
because we concentrated on European claims. It turns out, that the dynamic
of an option price is described by the market model and that the price of the
option is de�ned as a boundary problem.

� (100). The Greek �, the change of the option price because of a change of
the correlation was our motivation to do this calculation. One would expect
a relationship between � and �12, but it is remarkable, that this relationship
has such a simple structure.

� (101) and (102). Notice that one can determine the � only by the knowledge
of some derivatives with respect to parameters which concern only one stock.
Of course, there is no di�erence between the �rst and the second stock. These
relations are valid in the one-dimensional case with � � 0.

� (103). This is an extension of the vega-gamma relation as derived in the
one-dimensional case, see (50).

� (104). The interest rate risk is well known to be the negative product of
duration and the amount of money invested. The term in the parentheses is
exactly the amount of money one would have to invest in the cash bond in
order to delta-hedge the option.

� (105). This relation is the two-dimensional rates symmetry, an extension of
equation (44).

5.4 Cross-Gamma and Correlation Risk

The simplicity of equation (100) is based on a well-known relationship of multivari-
ate normal distribution functions published in [4], which says the following. We
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suppose that the vector X of n random variables with means zero and unit vari-
ances has a nonsingular normal multivariate distribution with probability density
function

�n(x1; : : : ; xn; c11; : : : ; cnn) = (2�)�
1
2njCj 12 exp

�
�1

2
xTCx

�
: (106)

Here C is the inverse of the covariance matrix of X, which is denoted by R, and
has elements f�ijg. Then the following identity can be proved easily by writing the
density in terms of its characteristic function.

@�n
@�ij

=
@2�n
@xi@xj

: (107)

In the two-dimensional case this reads as

@n2(x; y; �)

@�
=

@2n2(x; y; �)

@x@y
; (108)

which can be extended readily to the corresponding cumulative distribution func-
tion, i.e.,

@N2(x; y; �)

@�
=

@2N2(x; y; �)

@x@y
= n2(x; y; �): (109)

6 Examples in the Two-Dimensional Case

6.1 European Options on the Minimum/Maximum of Two
Assets

We consider the payo�

h
�
�
�min(�S(1)T ; �S

(2)
T ) �K

�i+
: (110)

This is a European put or call on the minimum (� = +1) or maximum (� = �1) of
the two assets S(1)

T and S
(2)
T with strike K. As usual, the binary variable � takes

the value +1 for a call and �1 for a put. Its value function has been published
in [5] and can be written as

v(t; S
(1)
t ; S

(2)
t ;K; T; q1; q2; r; �1; �2; �; �; �)

= �
h
S
(1)
t e�q

1�N2(�d1; �d3;���1)

+ S
(2)
t e�q

2�N2(�d2; �d4;���2)

� Ke�r�
�
1� ��

2
+ �N2(�(d1 � �1

p
� ); �(d2 � �2

p
� ); �)

��
; (111)

�2
�
= �21 + �22 � 2��1�2; (112)
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�1
�
=

��2 � �1
�

; (113)

�2
�
=

��1 � �2
�

; (114)

d1
�
=

ln(S
(1)
t =K) + (r � q1 + 1

2�
2
1)�

�1
p
�

; (115)

d2
�
=

ln(S
(2)
t =K) + (r � q2 + 1

2�
2
2)�

�2
p
�

; (116)

d3
�
=

ln(S
(2)
t =S

(1)
t ) + (q1 � q2 � 1

2�
2)�

�
p
�

; (117)

d4
�
=

ln(S
(1)
t =S

(2)
t ) + (q2 � q1 � 1

2�
2)�

�
p
�

: (118)

6.1.1 Greeks

Space homogeneity implies that

v = S
(1)
t

@v

@S
(1)
t

+ S
(2)
t

@v

@S
(2)
t

+K
@v

@K
: (119)

Using this equation we can immediately write down the deltas

@v

@S
(1)
t

= �e�q
1�N2(�d1; �d3;���1); (120)

@v

@S
(2)
t

= �e�q
2�N2(�d2; �d4;���2); (121)

@v

@K
= ��e�r�

�
1� ��

2
+ �N2(�(d1 � �1

p
� ); �(d2 � �2

p
� ); �)

�
: (122)

Computing the gammas is actually the only situation where di�erentiation is needed.
We use the identities

@

@x
N2(x; y; �) = n(x)N

 
y � �xp
1� �2

!
; (123)

@

@y
N2(x; y; �) = n(y)N

 
x� �yp
1� �2

!
; (124)

and obtain

@2v

@(S
(1)
t )2

=
�e�q

1�

S
(1)
t

p
�

"
�

�1
n(d1)N

 
��

d3 � d1�1

�2
p
1� �2

!
(125)
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� �

�
n(d3)N

 
��

d1 � d3�1

�2
p
1� �2

!#
;

@2v

@(S(2)t )2
=

�e�q
2�

S
(2)
t

p
�

"
�

�2
n(d2)N

 
��

d4 � d2�2

�1
p
1� �2

!
(126)

� �

�
n(d4)N

 
��

d2 � d4�2

�1
p
1� �2

!#
;

@2v

@S
(1)
t @S

(2)
t

=
��e�q

1�

S
(2)
t �

p
�
n(d3)N

 
��

d1 � d3�1

�2
p
1� �2

!
: (127)

The sensitivity with respect to correlation is directly related to the cross-gamma

@v

@�
= �1�2�S

(1)
t S

(2)
t

@2v

@S
(1)
t @S

(2)
t

: (128)

We refer to (101) and (102) to get the following formulas for the vegas,

@v

@�1
=

�v� + �21� (S
(1)
t )2v

S
(1)
t S

(1)
t

�1
(129)

= S
(1)
t e�q

1�
p
�

"
�1��n(d3)N

 
��

d1 � d3�1

�2
p
1� �2

!
(130)

+ n(d1)N
 
��

d3 � d1�1

�2
p
1� �2

!#
;

@v

@�2
=

�v� + �22� (S
(2)
t )2v

S
(2)
t S

(2)
t

�2
(131)

= S
(2)
t e�q

2�
p
�

"
�2��n(d4)N

 
��

d2 � d4�2

�1
p
1� �2

!
(132)

+ n(d2)N
 
��

d4 � d2�2

�1
p
1� �2

!#
:

Looking at (96) and (97) the rhos are given by

@v

@q1
= �S(1)t �

@v

@S
(1)
t

; (133)

@v

@q2
= �S(2)t �

@v

@S
(2)
t

; (134)

@v

@r
= �K�

@v

@K
: (135)
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Among the various ways to compute theta one may use the one based on (98).

@v

@t
= �1

�

h
q1vq1 + q2vq2 + rvr +

�1
2
v�1 +

�2
2
v�2

i
: (136)

6.2 Outside Barrier Options

The payo� of an outside barrier option is

[� (S1(T )�K)]+ IIfmin0�t�T (�S2(t))>�Bg (137)

This is a European put or call with strike K and a knock-out barrier H in a second
asset, called the outer asset. As usual, the binary variable � takes the value +1 for
a call and �1 for a put and the binary variable � takes the value +1 for a lower
barrier and �1 for an upper barrier. We abbreviate

�i = r � qi: (138)

This is an example of a path-dependent rainbow option, a case which is not covered
by the previous theory. However, it is illuminating to see how some of the ideas
are still successfully applicable. The value provided by Heynen and Kat has been
published in [3].

V0 = �S1(0)e
�q1TN2(�d1;��e1;���)

��S1(0)e�q1T exp
�
2(�2 + ��1�2) ln(H=S2(0))

�22

�
N2(�d

0
1;��e01;���)

��Ke�rTN2(�d2;��e2;���)
+�Ke�rT exp

�
2�2 ln(H=S2(0))

�22

�
N2(�d

0
2;��e02;���); (139)

d1 =
ln(S1(0)=K) + (�1 + �21)T

�1
p
T

; (140)

d2 = d1 � �1
p
T ; (141)

d01 = d1 +
2� ln(H=S2(0))

�2
p
T

; (142)

d02 = d2 +
2� ln(H=S2(0))

�2
p
T

; (143)

e1 =
ln(H=S2(0))� (�2 + ��1�2)T

�2
p
T

; (144)

e2 = e1 + ��1
p
T ; (145)

e01 = e1 � 2 ln(H=S2(0))

�2
p
T

; (146)

e02 = e2 � 2 ln(H=S2(0))

�2
p
T

: (147)
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6.2.1 Greeks

Homogeneity in price tells us that

V0 = S1(0)
@V0

@S1(0)
+K

@V0
@K

: (148)

This allows us to read o� the delta(inner spot)

@V0
@S1(0)

= �e�q
1TN2(�d1;��e1;���) (149)

��e�q1T exp
�
2(�2 + ��1�2) ln(H=S2(0))

�22

�
N2(�d

0
1;��e01;���)

and the dual delta(inner strike)

@V0
@K

= ��e�rTN2(�d2;��e2;���) (150)

+�e�rT exp
�
2�2 ln(H=S2(0))

�22

�
N2(�d

0
2;��e02;���):

7 Generalization to Higher Dimensions and other

Market Models

7.1 Multidimensional Black-Scholes Model

7.1.1 Scale Invariance of Time

The general idea presented in the one dimensional case is valid in higher dimensions
too. Therefore we have got the relation, which hold for all a > 0:

v(x1; :::; xn; �; r; q1; :::; qn; �11; :::; �nn) =

v(x1; :::; xn;
�

a
; ar; aq1; :::; aqn;

p
a�11; :::;

p
a�nn) (151)

We di�erentiate with respect to a and evaluate at a = 1:

0 = ��+ r�+
nX
i=1

qi�qi +
1

2

nX
i;j=1

�ij�ij (152)

�ij denotes the di�erentiation of v with respect to �ij.

7.1.2 Price Homogeneity

Equations (39) and (40) easily extend to

v =
nX
i=1

xi�i +
mX
j=1

kj�
k
j (153)
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nX
i;j=1

xixj�ij =
mX

i;j=1

kikj�
k
ij (154)

for strike-de�ned options, and equations (41) and (42) to

0 =
nX
i=1

xi�i +
mX
j=1

lj�
l
j (155)

nX
i;j=1

xixj�ij +
nX
i=1

xi�i =
mX

i;j=1

lilj�
l
ij +

mX
i=1

li�
l
i (156)

for level-de�ned options.

7.1.3 European Options in the Black-Scholes Model

The previous homogeneity based relations are model-independent. In the Black-
Scholes model we may furthermore invoke the multidimensional Black-Scholes PDE

0 = �v� � rv +
nX
i=1

xi(r � qi)@xiv +
1

2

nX
i;j=1

(� � �T )ijxixj@xi@xjv (157)

to compute Greeks.

7.2 Beyond Black-Scholes

Up to now we illustrated our ideas in the Black-Scholes model and in some parts
we used speci�c properties of this model. Nevertheless there are some properties,
which are so fundamental, that they should hold in any realistic market model.
These fundamental properties are the homogeneity of time, the scale invariance
of time and the scale invariance of prices. For every market model one uses, one
should check, if the model ful�lls these properties.
An example for a market model with non-deterministic volatility is Heston's stochas-
tic volatility model [2].
In this more general framework one needs to clarify the notion of vega, rho etc. A
change of volatility could mean a change of the entire underlying volatility process.
If the pricing formula depends on input parameters such as initial volatility, volatil-
ity of volatility, mean reversion of volatility, then one can consider derivatives with
respect to such parameters. It turns out that our strategy to compute Greeks can
still be applied successfully in a stochastic volatility model.

7.3 Heston's Stochastic Volatility Model

dSt = St

h
�dt+

p
v(t)dW (1)

t

i
; (158)

dvt = �(� � vt) dt+ �
p
v(t)dW

(2)
t ; (159)
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Cov
h
dW

(1)
t ; dW

(2)
t

i
= � dt; (160)

�(S; v; t) = �v: (161)

The model for the variance vt is the same as the one used by Cox, Ingersoll and
Ross for the short term interest rate. We think of � > 0 as the long term variance,
of � > 0 as the rate of mean-reversion. The quantity �(S; v; t) is called the market
price of volatility risk.
Heston provides a closed-form solution for European vanilla options paying

[� (ST �K)]+ : (162)

As usual, the binary variable � takes the value +1 for a call and �1 for a put, K
the strike in units of the domestic currency, q the risk free rate of asset S, r the
domestic risk free rate and T the expiration time in years.

7.3.1 Abbreviations

a
�
= �� (163)

u1
�
=

1

2
(164)

u2
�
= �1

2
(165)

b1
�
= � + �� �� (166)

b2
�
= � + � (167)

dj
�
=

q
(��'i � bj)2 � �2(2uj'i� '2) (168)

gj
�
=

bj � ��'i + dj
bj � ��'i � dj

(169)

�
�
= T � t (170)

Dj(�; ')
�
=

bj � ��'i + dj
�2

�
1� edj�

1� gjedj�

�
(171)

Cj(�; ')
�
= (r � q)'i� (172)

+
a

�2

�
(bj � ��'i + d)� � 2 ln

�
1� gje

dj�

1� edj�

��
x = lnSt (173)

fj(x; v; t; ')
�
= eCj (�;')+Dj (�;')v+i'x (174)

Pj(x; v; �; y)
�
=

1

2
+

1

�

Z 1

0

<
�
e�i'yfj(x; v; �; ')

i'

�
d' (175)

pj(x; v; �; y)
�
=

1

�

Z 1

0

< �e�i'yfj(x; v; �; ')� d' (176)
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P+(�)
�
=

1� �

2
+ �P1(lnSt; vt; �; lnK) (177)

P�(�)
�
=

1� �

2
+ �P2(lnSt; vt; �; lnK) (178)

This notation is motivated by the fact that the numbers Pj are the cumulative
distribution functions (in the variable y) of the log-spot price after time � starting
at x for some drift �. The numbers pj are the respective densities.

7.3.2 Value

The value function for European vanilla options is given by

V = �
�
e�q�StP+(�)�Ke�r�P�(�)

�
(179)

The value function takes the form of the Black-Scholes formula for vanilla options.
The probabilities P�(�) correspond to N (�d�) in the constant volatility case.

7.3.3 Greeks

The deltas can be obtained based on the homogeneity of prices.

Spot delta.

�
�
=

@V

@St
= �e�q�P+(�) (180)

Dual delta.

@V

@K
= ��e�r�P�(�) (181)

Gamma.

�
�
=

@�

@St
=

@V

@x

@x

@St
=

e�q�

St
p1(lnSt; vt; �; lnK) (182)

As in the case of vanilla options we observe that

Ste
�q�p1(lnSt; vt; �; lnK) = Ke�r�p2(lnSt; vt; �; lnK); (183)

Rho. Rho is connected to delta via equations (48) and (49).

@V

@r
= �Ke�r� �P�(�); (184)

@V

@q
= ��Ste�q� �P+(�): (185)
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Theta. Theta can be computed using the partial di�erential equation for the He-
ston vanilla option

Vt + (r � q)SVS +
1

2
�vVvv +

1

2
vS2VSS + ��vSVvS � qV

+[�(� � v) � �]Vv = 0; (186)

where the derivatives with respect to initial variance v must be evaluated
numerically.

8 Summary

We have learned how to employ homogeneity-based methods to compute analytical
formulas of Greeks for analytically known value functions of options in a one-and
higher-dimensional market. Restricting the view to the Black-Scholes model there
are numerous relations between various Greeks which are of fundamental interest.
The method helps saving computation time for the mathematician who has to
di�erentiate complicated formulas as well as for the computer, because analytical
results for Greeks are usually faster to evaluate than �nite di�erences involving at
least twice the computation of the option's value. Knowing how the Greeks are
related to each other can speed up �nite-di�erence-, tree-, or Monte Carlo-based
computation of Greeks or lead at least to a quality check. Many of the results
are valid beyond the Black-Scholes model. Most remarkably some relations of the
Greeks are based on properties of the normal distribution refreshing the active
interplay between mathematics and �nancial markets to our very pleasure.
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