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1 In-the-money knock-out call

The results reported in this paper were motivated by the problem of pricing and
hedging a particular exotic option, a call which knocks out in the money. More
specifically, we assume a geometric Brownian motion model

dS(t) = rS(t) dt + σS(t) dW (t), S(0) > 0, (1.1)

for an underlying asset, henceforth called a stock, even though it is often some
other instrument, such as an exchange rate. The interest rate r ∈ R, the volatility
σ > 0 and the planning horizon T > 0 are assumed to be constant. The process
(W (t); 0 ≤ t ≤ T ) is a Brownian motion under a probability measure P which is
risk-neutral, i.e., is chosen so that the stock has mean rate of return r.

We introduce a knock-out call option whose payoff at expiration date T is

(S(T ) −K)+I{max0≤t≤T S(t)<B}, (1.2)

where the strike price K and the knock-out barrier B satisfy 0 < K < B and
IA denotes the indicator of the generic event A. This call “knocks out” in the
money, which makes the implementation of the Black-Scholes hedging strategy
difficult, as we now explain.

If 0 ≤ t ≤ T , S(t) = x > 0, and the call has not knocked out prior to time t,
then the value of the call at time t is given by the risk-neutral pricing formula

v(t, x) � E
[
e−r(T−t)(S(T ) −K)+I{maxt≤u≤T S(u)<B}

∣∣ S(t) = x
]
. (1.3)

The joint distribution of the drifted Brownian increment Y = W (T ) −W (t) +
θ(T − t) and its maximum Z = maxt≤s≤T (W (s) − W (t) + θ(s − t)) over the
interval [t, T ] can be derived using Girsanov’s theorem (see formula 1.1.8 of [1]
or [12], Section 3.5) and is, for all z > 0 and y < z,

P{Y ∈ dy, Z ∈ dz} =
2(2z − y)
τ
√

2πτ
exp

{
− (2z − y)2

2τ
+ θy − 1

2
θ2τ

}
dy dz, (1.4)

where τ � T−t. Let N denote the standard normal distribution function. Using
formula (1.4), v(t, x) can be computed explicitly: For t ∈ [0, T ) and x ∈ (0, B],

v(t, x) = x
[
N(b− θ+) −N(k − θ+)

]
+ xe2bθ+

[
N(b + θ+) −N(2b− k + θ+)

]
−Ke−rτ

[
N(b− θ−) −N(k − θ−)

]
−Ke−rτ+2bθ−

[
N(b + θ−) −N(2b− k + θ−)

]
,

(1.5)

where b � 1
σ
√
τ

log B
x , k � 1

σ
√
τ

log K
x and θ± = ( rσ ± σ

2 )
√
τ .

Definition (1.3) implies that v(t, B) = 0 for 0 ≤ t ≤ T . For 0 < x ≤ B,
as t ↑ T , we obtain from (1.5) that v(t, x) approaches the discontinuous limit
v(T, x) = (x − K)+I{x<B}. Consequently, for x near B and t near T , the
“delta” vx(t, x) and “gamma” vxx(t, x) of this option become large in absolute
value. The slope and the curvature of the dashed lines in Figure 1 illustrate
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Figure 1: Upper hedging prices v∗(0, S0; α) given by (4.10) for call options with strike
K = 100, knock-out barrier B = 150 and maturities T = 50/365, T = 10/365 and
T = 1/365. We used the interest rate r = 5%, the volatility σ = 30% and the hedge-
portfolio constraint α = 10. The dashed lines show the corresponding prices given by
(1.5) without the hedge-portfolio constraint (2.2).

this. As a result, a trader seeking to hedge a short position in this option will
find himself taking a large short position in the underlying stock and making
large adjustments to this position frequently. As a practical matter, this naive
implementation of the delta hedging strategy is not possible.

A common pricing practice for such options is to move the barrier. If one
prices and hedges the option as if the barrier were some number B′ > B, then
the dangerous region of high delta and gamma can be moved above B, and
the option will knock out before the stock reaches this region. Of course, the
computed price of the option increases with increasing B′, and there is no clear
procedure for choosing an appropriate value for B′. Furthermore, this practice
necessarily prices one option at a time, rather than pricing a book of options by
taking into account offsetting exposures in the book.

We propose in this paper an alternative to moving the barrier, namely, con-
straining the hedging portfolio. In Section 4 we show that this can be interpreted
in terms of the transaction cost associated with liquidating a large short posi-
tion (Remark 4.4), and also provides a first-order approximation to the price
obtained by moving the barrier (Remark 4.3). Furthermore, the theory applies
to a book of options as well as to individual options, although the computational
issues for a book can be substantial. We work out a simple case of a book of
two barrier options in Example 6.7.
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2 Model formulation

Throughout this paper, we work within the context of the canonical probability
space for Brownian motion. In particular, we take Ω to be the set of continuous
functions from [0, T ] to R taking the value zero at zero, we take P to be Wiener
measure, and we take W (t, ω) = ω(t) for all t ∈ [0, T ] and all ω ∈ Ω. For
0 ≤ t ≤ T , we denote by FW(t) the σ-algebra generated by (W (s); 0 ≤ s ≤ t).
The σ-algebra F(T ) is the P-completion of FW(T ), and for 0 ≤ t ≤ T , F(t)
is the augmentation of FW(t) by the P-null sets of F(T ). A random variable
X is F(t)-measurable if and only if there exists an FW(t)-measurable random
variable Y with {X 
= Y } ∈ F(T ) and P(X 
= Y ) = 0.

We introduce a contingent claim whose payoff at expiration date T is g(S(·)).
Let C+[0, T ] denote the space of nonnegative continuous functions on [0, T ]. We
assume that the nonnegative function g : C+[0, T ] → [0,∞) is lower semicon-
tinuous in the supremum norm topology. The argument of g is the path of the
stock price process S from date 0 to date T , and because this path is random,
g(S(·)) is a random variable on (Ω,F(T ),P).

The problem of super-replication of a short position in this option can be
posed as follows. Let X(0) > 0 be a given nonrandom initial wealth, and choose
an (F(t); 0 ≤ t ≤ T )-adapted portfolio process (π(t); 0 ≤ t ≤ T ) and cumulative
consumption process (C(t); 0 ≤ t ≤ T ). We interpret π(t) as the proportion
of wealth invested in the stock at time t (sometimes called the gearing). The
remaining wealth is invested at interest rate r, and C(t) is the amount of wealth
consumed up to time t. Hence, C(t) is nondecreasing, right-continuous with left
limits, and C(0) = 0. This leads us to model the differential of wealth as

dX(t) = π(t)X(t)
dS(t)
S(t)

+ rX(t)(1 − π(t)) dt− dC(t)

= rX(t) dt + σπ(t)X(t) dW (t) − dC(t).
(2.1)

If X(T ) ≥ g(S(·)) almost surely, we say that (π,C) super-replicates g(S(·))
beginning with initial wealth X(0).

Next, given some fixed number α ∈ [0,∞), we impose the portfolio constraint

π(t) ≥ −α, 0 ≤ t ≤ T , almost surely. (2.2)

The point of this constraint, in the context of the knock-out call of the previous
section, is to avoid short positions which are too large relative to the value of the
contingent claim being hedged. The parameter α must be chosen by the person
pricing the contingent claim; in the case of the knock-out call, we interpret α in
terms of a transaction cost in Remark 4.4, and this provides a guide to choosing
it. If α = 0, then short positions in the underlying are prohibited.

The upper hedging price of the contingent claim g(S(·)) is defined to be

v(0, S(0);α) � inf

X(0)

∣∣∣∣∣∣∣∣
there exists a portfolio process π
satisfying (2.2) and there exists
a cumulative consumption process C
such that X(T ) ≥ g(S(·)) almost surely

 . (2.3)
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Cvitanić & Karatzas [5] have shown that when v(0, S(0);α) is finite, there exists
an X(0), denoted X̂(0), and corresponding portfolio and consumption processes
π̂ and Ĉ attaining the infimum in (2.3). We denote the corresponding wealth
process by X̂(t), 0 ≤ t ≤ T . For 0 ≤ t < T , we define the upper hedging price
at time t of the contingent claim g(S(·)) to be X̂(t). The upper hedging price
X̂(t) generally exceeds the risk-neutral price E[e−r(T−t)g(S(·)) |F(t)] because
the upper hedging price includes a “reserve” to offset the portfolio constraint.
During the evolution of the process, some part of this reserve might be revealed
to be unnecessary. The process Ĉ is included in the formulation of the upper
hedging price so that unnecessary reserve can be removed and thus no longer
included in the upper hedging price.

Cvitanić & Karatzas [5] and El Karoui & Quenez [8] have shown that the
problem of computing the upper hedging price, which is a minimization problem,
can be transformed to a dual maximization problem. Their results apply to path-
dependent contingent claims written on multiple assets whose models may have
random, time-varying volatilities, and they require only that π be constrained
to lie in a closed, convex set. The dual problem is one of maximization over
changes of probability measure, and in its full generality is not easy to solve. In
our model, the dual problem takes the form of (2.4) below.

Theorem 2.1 (Cvitanić & Karatzas, El Karoui & Quenez) The upper
hedging price of (2.3) satisfies

v(0, S(0);α) = sup
λ

Eλ

[
e−rT−αλ(T )g(S(·))

]
, (2.4)

where the supremum is over all adapted, nondecreasing, processes which are Lip-
schitz continuous in t, uniformly in ω, and satisfy λ(0) = 0. Here Eλ denotes
expectation under the probability measures Pλ whose Radon-Nikodým derivative
with respect to P is

dPλ

dP
= exp

{
− 1
σ

∫ T

0

λ′(t) dW (t) − 1
2σ2

∫ T

0

(λ′(t))2dt
}
. (2.5)

The supremum in (2.4) over Lipschitz continuous processes is often not at-
tained, and Lipschitz continuity is not easily relaxed in Theorem 2.1 because of
the need to define Pλ by (2.5). In this paper we shall formulate the dual problem
in such a way that no change of measure is required, and we can then extend the
class of processes over which the supremum in the dual problem is computed.

Broadie, Cvitanić & Soner [4] showed that in the case of a contingent claim
whose payoff at expiration is a function of the final value of a single, geometric
Brownian motion, the dual problem can be solved in two steps. One first com-
putes a certain transform, which we call the face-lift, of the payoff function (see
(2.6) below). One next prices the contingent claim whose payoff at the final time
is the face-lifted version of the original payoff. One does this using the usual
risk-neutral pricing formula, i.e., without regard to the portfolio constraint. For
our model, the result of [4] takes the form of the next theorem. A presentation
of the results of both [5] and [4] in full generality may be found in [13].
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Theorem 2.2 (Broadie, Cvitanić & Soner) Let ϕ : [0,∞) → [0,∞) be
lower semicontinuous, and suppose the contingent claim g(S(·)) is given by
g(S(·)) = ϕ(S(T )). Define

ϕ̂α(x) � sup
λ≥0

e−αλϕ(xe−λ), x ≥ 0. (2.6)

Then the upper hedging price under hedge-portfolio constraint (2.2) is given by

v(0, S(0);α) = E
[
e−rT ϕ̂α(S(T ))

]
. (2.7)

The goal of this paper is to extend Theorem 2.2 to path-dependent options.
The main result is that in place of the face-lifting procedure (2.6), one must solve
a singular stochastic control problem. This problem can sometimes be solved
by inspection, and in particular, such a solution is possible for the knock-out
call of the previous section. The solution of the stochastic control problem leads
directly to a formula for the upper hedging price, in the spirit of (2.7).

The present paper is more general than [4] in that it allows path-dependent
options, but more special in that the only portfolio constraint considered here
is (2.2), whereas [4] permits a general convex constraint on π. There appears
to be no insurmountable obstacle to working out a theory along the lines of the
present paper for the more general constraint.

The role of upper hedging prices in the presence of stochastic volatility and/or
transaction costs is studied in [2], [6], [7], [15]. Gamma constraints are treated
in [14]. Lower hedging prices are introduced in [10], and [11] treats perpetual
American options using similar methodology. Classical Black-Scholes prices for
a large number of exotic options are provided by Zhang [17].

3 Dual problem as singular stochastic control

We wish to convert the computation of the supremum on the right-hand side
of (2.4) to a singular stochastic control problem. Toward this end, we let
(W (t),F(t); 0 ≤ t ≤ T ) be the canonical Brownian motion defined on the canon-
ical probability space (Ω,F(T ),P) of the previous section, and we denote

C �
{
λ;λ is an {F(t); 0 ≤ t ≤ T}-adapted,

nondecreasing, continuous process with λ(0) = 0
}
.

(3.1)

One result of this paper is the following.

Theorem 3.1 Let g be a nonnegative, lower-semicontinuous function defined
on C+[0, T ]. The upper hedging price for the contingent claim with payoff g(S)
at expiration date T and hedge-portfolio constraint (2.2) is

v(0, S(0);α) = sup
λ∈C

E
[
e−rT−αλ(T )g(Se−λ)

]
, (3.2)

where
S(t) = S(0) exp

(
σW (t) + µ(t)

)
, 0 ≤ t ≤ T, (3.3)

with µ(t) �
(
r − 1

2σ
2
)
t is the solution of (1.1).
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The problem of maximizing E
[
e−rT−αλ(T )g(Se−λ)

]
over all λ ∈ C is one of

stochastic control. In the examples we shall see that there is often a sequence of
processes {λn}∞n=1 in C for which

lim
n→∞

E
[
e−rT−αλn(T )g(Se−λn)

]
= v(0, S(0);α)

and the limit λ of the sequence {λn}∞n=1 is a singularly continuous process;
hence the characterization of the right-hand side of (3.2) as a singular stochastic
control problem. However, the limiting λ can fail to obtain the supremum in
(3.2) because g is lower semicontinuous rather than upper semicontinuous; lower
semicontinuity is needed for the proof of Theorem 3.1 (see Lemma 7.2).

The difference between Theorems 2.1 and 3.1 is that whereas the former
requires a maximization over changes of measure, the latter allows one to maxi-
mize over processes λ ∈ C, always computing expectations using the same opera-
tor E. Of course, one can use the Radon-Nikodým derivative dPλ/dP to rewrite
the right-hand side of (2.4) as an expectation under the expectation operator
corresponding to P, but the presence of the Radon-Nikodým derivative in the
resulting stochastic control problem complicates it considerably. As we shall see
in the examples, the stochastic control problem of (3.2) can often be solved by
inspection. The proof of Theorem 3.1 is given in Section 7.

4 Constrained in-the-money knock-out call

For the in-the-money knock-out call of Section 1, the function g is

g(y) �
(
y(T ) −K

)+
I{max0≤t≤T y(t)<B}, y ∈ C+[0, T ]. (4.1)

We have chosen to write the set {max0≤t≤T y(t) < B} with the strict inequality
so that g will be lower semicontinuous. For geometric Brownian motion (3.3),
the probability of reaching a barrier is the same as the probability of crossing
the same barrier, so the contingent claim defined by

g∗(y) �
(
y(T ) −K

)+
I{max0≤t≤T y(t)≤B}, y ∈ C+[0, T ], (4.2)

has the same upper hedging price.
We consider the problem of maximization of

E
[
e−rT−αλ(T )

(
Sλ(T ) −K

)+
I{Mλ(T )<B}

]
, (4.3)

where
Sλ(t) � S(t)e−λ(t), Mλ(t) � max

0≤u≤t
Sλ(u), (4.4)

and 0 < S(0) < B. The maximization is over processes λ ∈ C. To find the
maximal value of (4.3) it is clear that one should choose the nondecreasing
process λ so that Mλ(T ) is strictly less than B. On the other hand, one should
not have λ be any larger than necessary because λ appears in both the discount
term e−rT−αλ(T ) and as a discount in the formula for Sλ. If g were given by (4.2),
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the maximizing λ would be that nondecreasing process which causes reflection
of Sλ at the barrier B, i.e.,

λ∗(t) � max
0≤u≤t

(
logS(u) − logB

)+
. (4.5)

Since g is dominated by g∗, we have

v(0, S(0);α) ≤ E
[
e−rT−αλ∗(T )

(
Sλ∗(T ) −K

)+]
. (4.6)

But with g given by (4.1), it is still possible to choose a sequence of barriers
{Bn}∞n=1 converging up to B but always strictly less than B and then take
the sequence of processes {λn}∞n=1 for which λn causes reflection at Bn. Then
λn(T ) ↓ λ∗(T ) and therefore Sλn(T ) ↑ Sλ∗(T ) as n → ∞. By the bounded
convergence theorem,

v(0, S(0);α) ≥ lim sup
n→∞

E
[
e−rT−αλn(T )

(
Sλn(T ) −K

)+]
= E

[
e−rT−αλ∗(T )

(
Sλ∗(T ) −K

)+]
.

(4.7)

These considerations have led us to the following corollary of Theorem 3.1.

Corollary 4.1 For 0 ≤ t ≤ T and 0 < x ≤ B, define

v∗(t, x;α) � E
[
e−r(T−t)−α(λ∗(T )−λ∗(t))

(
Sλ∗(T ) −K

)+ ∣∣ Sλ∗(t) = x
]
. (4.8)

Let t ∈ [0, T ] be given, and assume that S(t) = x. Then the upper hedging price
at time t of the in-the-money knock-out call of Section 1 is

v(t, x;α) = v∗(t, x;α)I{x<B}, (4.9)

and for t ∈ [0, T ) the function v∗(t, x;α) can be computed (with removable sin-
gularities at α = 2r/σ2 and α = −1 + 2r/σ2 in the case 2r ≥ σ2) to be

x
[
N(b− θ+) −N(k − θ+) (4.10)

+ e
1
2 s(s−2θ+)

{
esbN(−b + θ+ − s) − eskN(−k + θ+ − s)

}]
+

sxe2bθ+

s− 2θ+

[
N(b + θ+) −N(* + θ+)

+ e
1
2 s(s−2θ+)

{
e(s−2θ+)bN(−b + θ+ − s) − e(s−2θ+)�N(−* + θ+ − s)

}]
−Ke−rτ

[
N(b− θ−) −N(k − θ−)

+ e
1
2 s̃(s̃−2θ−)

{
es̃bN(−b + θ− − s̃) − es̃kN(−k + θ− − s̃)

}]
− s̃Ke−rτ+2bθ−

s̃− 2θ−

[
N(b + θ−) −N(* + θ−)

+ e
1
2 s̃(s̃−2θ−)

{
e(s̃−2θ−)bN(−b + θ− − s̃) − e(s̃−2θ−)�N(−* + θ− − s̃)

}]
,
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where we have used the abbreviations τ = T − t and

b =
1

σ
√
τ

log
B

x
, k =

1
σ
√
τ

log
K

x
, θ± =

( r

σ
± σ

2

)√
τ ,

* = 2b− k, s = (1 + α)σ
√
τ , s̃ = ασ

√
τ .

Proof: Theorem 3.1 and the argument preceding the statement of the corollary
show that v∗(0, S(0);α) is the upper hedging price of the knock-out call for
0 < S(0) < B. For S(0) = B, the call is knocked out at inception, and hence
has upper hedging price zero. This establishes (4.9) when t = 0. For other
values of t, one can verify the formula by a translation of the initial condition.
Equation (4.10) is obtained by direct calculation using (1.4). ♦

It is instructive to construct the short-position hedge. Formula (4.10) with
v∗(T, x;α) = (x−K)+ shows that v∗(t, x;α) is continuous on [0, T ]× (0, B] and
smooth on [0, T ) × (0, B].

Let S be the underlying geometric Brownian motion given by (3.3). Then
Sλ∗ is a Markov process and

dSλ∗(t) = Sλ∗(t)[r dt + σ dW (t) − dλ∗(t)]. (4.11)

Moreover,

e−rt−αλ∗(t)v∗(t, Sλ∗(t);α) = E
[
e−rT−αλ∗(T )

(
Sλ∗(T ) −K

)+ ∣∣ F(t)
]
. (4.12)

We compute the differential using Itô’s formula

d
(
e−rt−αλ∗(t)v∗(t, Sλ∗(t);α)

)
= e−rt−αλ∗(t)

[
−(αv∗ + Sλ∗v∗x) dλ

∗

+
(
−rv∗ + v∗t + rSλ∗v∗x +

1
2
σ2S2

λ∗v∗xx

)
dt + σSλ∗v∗x dW

]
.

But the right-hand side of (4.12) is a martingale, which implies[
αv∗(t, Sλ∗(t);α) + Sλ∗(t)v∗x(t, Sλ∗(t);α)

]
dλ∗(t) = 0,[

−rv∗(t, Sλ∗(t);α) + v∗t (t, Sλ∗(t);α) + rSλ∗(t)v∗x(t, Sλ∗(t);α)

+
1
2
σ2S2

λ∗(t)v∗xx(t, Sλ∗(t);α)
]
dt = 0,

i.e., for 0 ≤ t < T and 0 < x ≤ B,

αv∗(t, B;α) + Bv∗x(t, B;α) = 0, (4.13)

v∗t (t, x;α) + rxv∗x(t, x;α) +
1
2
σ2x2v∗xx(t, x;α) = rv∗(t, x;α). (4.14)

One can also obtain (4.13) and (4.14) by direct, albeit tedious, computation
beginning with (4.10).
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It can be verified by direct computation that because v∗ satisfies the Black-
Scholes partial differential equation (4.14) in the region [0, T )× (0, B], the func-
tion xv∗x does also; just differentiate (4.14) with respect to x and identify the
resulting terms as the partial derivatives of xv∗x. It follows that αv∗ + xv∗x satis-
fies the Black-Scholes partial differential equation. But αv∗(t, x;α)+xv∗x(t, x;α)
is nonnegative for t = T and 0 < x < B, x 
= K, and this function is zero on the
upper barrier x = B for 0 ≤ t < T (see (4.13)). It follows from the maximum
principle (or by regarding αv∗ + xv∗x as the price of a knock-out option with
nonnegative payoff upon expiration) that

αv∗(t, x;α) + xv∗x(t, x;α) ≥ 0, 0 ≤ t ≤ T , 0 < x ≤ B. (4.15)

Now suppose 0 < S(0) < B, and define Θ � inf{t ≥ 0; S(t) = B} to be the
time of knock-out; we allow the possibility that Θ > T , i.e., knock-out does not
occur before expiration. Let us begin with initial capital X̂(0) = v∗(0, S(0);α)
and use the portfolio process

π̂(t) � S(t)v∗x(t, S(t);α)
v∗(t, S(t);α)

I{t≤T∧Θ}, 0 ≤ t ≤ T, (4.16)

(see Figure 2) and consumption process

Ĉ(t) � v∗(Θ, B;α)I{Θ≤t≤T}, 0 ≤ t ≤ T. (4.17)

Relation (4.15) shows that π̂(t) ≥ −α for all t ∈ [0, T ]. The cumulative con-
sumption process Ĉ is identically zero until the option knocks out, at which time
it has a positive jump; see Figure 1 for the jump size.

Equation (4.14) shows that for 0 ≤ t < Θ ∧ T ,

dv∗(t, S(t);α) = rv∗(t, S(t);α) dt + σπ̂(t)v∗(t, S(t);α) dW (t).

Comparison to (2.1) shows that for t < Θ ∧ T , v∗(t, S(t);α) = X̂(t), the
wealth process corresponding to X̂(0), π̂ and Ĉ. If Θ ≤ T , then limt↑Θ X̂(t) =
v∗(Θ, B;α) and X̂(Θ) = limt↑Θ X̂(t) − C(Θ) = 0. For Θ < t ≤ T , we also have
X̂(t) = 0. In general,

X̂(t) = v(t ∧ Θ, S(t ∧ Θ);α), 0 ≤ t ≤ T, (4.18)

where v is defined by (4.9). In particular, X̂(T ) = v(T ∧ Θ, S(T ∧ Θ);α) =
(S(T ) − K)+I{Θ>T}, i.e., we have hedged a short position in the option in a
manner which respects the portfolio constraint π̂ ≥ −α.

Remark 4.2 If the knock-out call payoff were given by g∗ of (4.2) rather than
g of (4.1), the maximum of the quantity analogous to (4.3) would be attained
by λ∗ of (4.5). For 0 < S(0) < B, this maximum would be the upper hedging
price and this replacement would simplify the discussion preceding Corollary 4.1.
However, for S(0) = B, this would not give the upper hedging price. If S(0) = B
the option is certain to knock out and the upper hedging price is zero, as is the
maximum of the quantity in (4.3). However, if we replace g by g∗, the maximum
of the quantity analogous to (4.3) is strictly positive, and in fact is v∗(0, B;α).
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Figure 2: Proportions π̂(0) of the wealth in the underlying stock, calculated with (4.16)
and (4.10), to super-replicate the in-the-money knock-out call options with parameters
as in Figure 1. Note that the constraint π0 ≥ −α with α = 10 is satisfied. The
three dashed curves show the corresponding proportions S0vx(0, S(0))/v(0, S0) with
v(0, S(0)) given by (1.5) without the hedge-portfolio constraint (2.2). Note that these
proportions are not bounded from below.

Remark 4.3 (Interpretation as moving the barrier) A common practical
method for dealing with up-and-out call options which knock out in the money
is to price and hedge the option as if the barrier were at some level B′ strictly
greater than the contractual barrier B. The resulting pricing function is contin-
uous on [0, T ] × (0, B′], satisfies the Black-Scholes partial differential equation
on [0, T ) × (0, B′], is zero at the barrier B′, and agrees with the call payoff
(x −K)+ at the expiration time T . Our function v∗(t, x;α) is strictly positive
at x = B. For α > 0 we may extrapolate it linearly above this point so that it
is continuously differentiable by the formula

v∗(t, B;α) + (x−B)v∗x(t, B;α), x ≥ B. (4.19)

Because of (4.13), this linear extrapolation takes the value zero at x =
(
1 + 1

α

)
B,

independently of t. Consequently, v∗(t, x;α) may be regarded as an approxima-
tion to the option price obtained by moving the barrier to B′ =

(
1 + 1

α

)
B.

Remark 4.4 (Interpretation as transaction cost) The Black-Scholes for-
mula is based on the assumption that the bid-ask spread does not play a sig-
nificant role in option hedging. A trader who hedges a short position in the
knock-out option of this section can be left with a large short position in the

10



100 110 120 130 140 150 160

10

20

30

40

50

60

50 days

10 days

1 day

Option value

90

option pay-off Stock

price

S(0)

Figure 3: Upper hedging prices v∗(0, S(0), α) of the in-the-money knock-out call options
from Figure 1. Prices are extrapolated linearly and continuously differentiably beyond
the barrier B = 150 using (4.19). The dashed curves show the prices calculated via (1.5)
without hedge-portfolio constraint (2.2) but a barrier moved to B′ = B(1+1/α) = 165.
For applications, only the prices for S(0) < B = 150 are relevant.

underlying stock when the option knocks out, and covering this position can
entail a significant transaction cost. Let us suppose the trader prices the option
according to a function v(t, x) which is continuous in [0, T ]× (0, B], satisfies the
Black-Scholes partial differential equation in [0, T )× (0, B], and agrees with the
call payoff (x −K)+ at the expiration time T . Using the “delta-hedging strat-
egy” to hedge a short position, the trader will hold vx(t, x) shares of stock at
time t if the stock price is x, and upon knock-out of the option, will be left with
a position vx(t, B) in the stock valued at |Bvx(t, B)|. Suppose vx(t, B) is nega-
tive and it requires −

(
1 + 1

α

)
Bvx(t, B) with α > 0 to cover this short position.

The total hedging portfolio value is v(t, B), and since wealth invested in stock is
Bvx(t, B), the wealth invested in the money market must be v(t, B)−Bvx(t, B).
The money market position is exactly what is needed to cover the short stock
position, taking the transaction cost into account, if and only if the equation

v(t, B) −Bvx(t, B) = −
(
1 +

1
α

)
Bvx(t, B)

holds. This is equivalent to αv(t, B) + Bvx(t, B) = 0 for 0 ≤ t < T , which is
condition (4.13) satisfied by v∗(t, x;α). Together with the conditions already
specified on v, this uniquely determines v, and ensures that v(t, x) = v∗(t, x;α).
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5 The dual problem as impulsive control

Let 0 < t1 < t2 < · · · < tI ≤ T be fixed dates. For the examples of Section 6, it
is helpful to generalize Theorem 3.1 to right-continuous λ with possible jumps
only at these dates. We denote by R[0, T ] the set of nondecreasing functions λ
defined on [0, T ], continuous on [0, T ]\{t1, . . . , tI}, right-continuous at t1, . . . , tI ,
and with λ(0) = 0. We then define

R �
{
λ; λ is an {F(t)}0≤t≤T -adapted process with paths in R[0, T ]

}
. (5.1)

A function in R[0, T ] can be regarded as the cumulative distribution function
of a measure on [0, T ]. The measures corresponding to a sequence {λn}∞n=1 in
R[0, T ] converge weakly to the measure with cumulative distribution function
λ ∈ R[0, T ] if and only if λn(t) → λ(t) at every continuity point t of λ and for
t = T . Because the weak topology on measures can be metrized (see [16]), there
is a metric dw on R[0, T ] satisfying

λn(t) → λ(t) for every continuity point t of λ and t = T ⇐⇒ dw(λn, λ) → 0.

We may define a stronger metric d on R[0, T ] by

d(η, λ) = dw(η, λ) +
I∑

i=1

|η(ti) − λ(ti)|.

Then for every sequence {λn}∞n=1 in R[0, T ] and λ ∈ R[0, T ],

λn(t) → λ(t) ∀ t ∈ [0, T ] ⇐⇒ d(λn, λ) → 0, (5.2)

i.e., d metrizes pointwise convergence in R[0, T ].

Remark 5.1 If λ in (5.2) is continuous, pointwise convergence of λn to λ implies
uniform convergence. Given ε > 0, choose δ > 0 such that |t − s| ≤ δ implies
|λ(t) − λ(s)| ≤ ε. Choose 0 = s0 < s1 < · · · < sK = T such that sk+1 − sk ≤ δ
for all k. If λn → λ pointwise, we may choose N so that |λn(sk)−λ(sk)| ≤ ε for
every n ≥ N and every k. Given t ∈ [0, T ], we choose k so that sk ≤ t ≤ sk+1,
and then for all n ≥ N ,

|λn(t) − λ(t)| ≤ λn(t) − λn(sk) + |λn(sk) − λ(sk)| + |λ(sk) − λ(t)|
≤ λn(sk+1) − λn(sk) + 2ε
≤ |λn(sk+1) − λ(sk+1)| + |λ(sk+1) − λ(sk)|

+ |λ(sk) − λn(sk)| + 2ε
≤ 5ε.

More generally, suppose λ ∈ R[0, T ] is not necessarily continuous. Let
{λn}∞n=1 be a sequence in R[0, T ] converging pointwise to λ, and let δ > 0
be given. Then {λn}∞n=1 converges uniformly to λ on [0, T ] \

⋃I
i=1(ti − δ, ti).

Indeed, the argument in the previous paragraph shows uniform convergence on
each connected component of this set, and since there are only finitely many
such components, the convergence is uniform on the whole set. ♦
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The function g is defined on C+[0, T ], the space of nonnegative continuous
functions on [0, T ]. We extend it to C+[0, T ] ×R[0, T ] by the definition

g∗(y, λ) � inf
{

lim inf
n→∞

g
(
ye−λn

)∣∣∣ {λn}∞n=1 is a sequence in R[0, T ]
∩ C+[0, T ] converging pointwise to λ

}
,

y ∈ C+[0, T ], λ ∈ R[0, T ]. (5.3)

Proposition 5.2 Suppose g : C+[0, T ] → [0,∞) is of the form

g(y) = ϕ(y(t1), . . . , y(tI),m(y),M(y), A(y)),

where

m(y) � inf
0≤t≤T

y(t), M(y) � sup
0≤t≤T

y(t), A(y) � 1
T

∫ T

0

y(t) dt,

and ϕ : R
I+3 → [0,∞) is a lower-semicontinuous function which is jointly left-

continuous in its last three arguments. Then for y ∈ C+[0, T ] and λ ∈ R[0, T ],

g∗(y, λ) = ϕ
(
y(t1)e−λ(t1), . . . , y(tI)e−λ(tI),m

(
ye−λ

)
,M

(
ye−λ

)
, A

(
ye−λ

))
.

Proof: We claim that for fixed y ∈ C+[0, T ], the mappings λ �→ m(ye−λ),
λ �→ M(ye−λ) and λ �→ A(ye−λ) are continuous from R[0, T ] to [0,∞). Indeed,
fix y ∈ C+[0, T ] and suppose {λn}∞n=1 converges pointwise to λ. Let ε > 0 be
given and choose δ > 0 so that |y(s) − y(t)| ≤ ε whenever |s − t| ≤ δ. For
the sake of notational simplicity we define t0 � 0 and assume that tI = T . We
may assume without loss of generality that δ < min1≤i≤I(ti − ti−1). Because of
Remark 5.1, we may choose N(ε) so large that whenever n ≥ N(ε), we have

|λn(t) − λ(t)| ≤ ε ∀ t ∈
⋃I

i=1[ti−1, ti − δ].

For these t ∈
⋃I

i=1[ti−1, ti − δ], we have∣∣y(t)e−λn(t) − y(t)e−λ(t)
∣∣ ≤ M(y)e−λ(t)

∣∣eλ(t)−λn(t) − 1
∣∣

≤ M(y)(eε − 1).
(5.4)

On the other hand, for i ∈ {1, . . . , I} and t ∈ [ti − δ, ti], we have

y(t)e−λn(t) ≤ y(t)e−λn(ti−δ)

≤ |y(t) − y(ti − δ)| e−λn(ti−δ) + y(ti − δ)e−λn(ti−δ)

≤ ε + y(ti − δ)e−λ(ti−δ) + y(ti − δ)
∣∣e−λn(ti−δ) − e−λ(ti−δ)

∣∣
≤ ε + M

(
ye−λ

)
+ M(y)(eε − 1).

Combining this inequality with (5.4), we see that

M
(
ye−λn

)
≤ ε + M

(
ye−λ

)
+ M(y)(eε − 1). (5.5)
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Similarly,

y(t)e−λ(t) ≤ y(t)e−λ(ti−δ)

≤ |y(t) − y(ti − δ)| e−λ(ti−δ) + y(ti − δ)e−λ(ti−δ)

≤ ε + y(ti − δ)e−λn(ti−δ) + y(ti − δ)
∣∣e−λ(ti−δ) − e−λn(ti−δ)

∣∣
≤ ε + M

(
ye−λn

)
+ M(y)(eε − 1).

We may combine this with (5.4) to obtain

M
(
ye−λ

)
≤ ε + M

(
ye−λn

)
+ M(y)(eε − 1). (5.6)

We conclude that for n ≥ N(ε), the inequality∣∣M(
ye−λn

)
−M

(
ye−λ

)∣∣ ≤ ε + M(y)(eε − 1)

holds, and hence the mapping λ �→ M
(
ye−λ

)
is continuous. Similar arguments

show the continuity of λ �→ m
(
ye−λ

)
. The continuity of λ �→ A

(
ye−λ

)
follows

from the dominated convergence theorem.
Now let y ∈ C+[0, T ] and λ ∈ R[0, T ] be given, and let {λn}∞n=1 be a sequence

in R[0, T ] ∩ C+[0, T ] converging pointwise to λ. Because limn→∞ m
(
yeλn

)
=

m
(
ye−λ

)
, limn→∞ M

(
yeλn

)
= M

(
ye−λ

)
, limn→∞ A

(
yeλn

)
= A

(
ye−λ

)
and ϕ is

lower semicontinuous, we have

ϕ
(
y(t1)e−λ(t1), . . . , y(tI)e−λ(tI),m

(
ye−λ

)
,M

(
ye−λ

)
, A

(
ye−λ

))
≤ lim inf

n→∞
ϕ
(
y(t1)e−λn(t1), . . . , y(tI)e−λn(tI),m

(
ye−λn

)
,M

(
ye−λn

)
, A

(
ye−λn

))
= lim inf

n→∞
g
(
ye−λn

)
.

Taking the infimum of the right-hand side over sequences {λn}∞n=1 converging
pointwise to λ, we conclude that

ϕ
(
y(t1)e−λ(t1), . . . , y(tI)e−λ(tI),m

(
ye−λ

)
,M

(
ye−λ

)
, A

(
ye−λ

))
≤ g∗

(
y, λ

)
.

To obtain the reverse inequality, we choose λn ∈ R[0, T ] ∩ C+[0, T ] so that
λn(ti) = λ(ti) for i = 1, . . . , I and λn(t) ↓ λ(t) for every t ∈ [0, T ] as n → ∞.
Then ye−λn ↑ ye−λ pointwise. The joint left-continuity of ϕ in its last three
variables implies

ϕ
(
y(t1)e−λ(t1), . . . , y(tI)e−λ(tI),m

(
ye−λ

)
,M

(
ye−λ

)
, A

(
ye−λ

))
= lim

n→∞
ϕ
(
y(t1)e−λn(t1), . . . , y(tI)e−λn(tI),m

(
ye−λn

)
,M

(
ye−λn

)
, A

(
ye−λn

))
= lim

n→∞
g
(
ye−λn

)
≥ g∗(y, λ). ♦

14



Theorem 5.3 Let g be a nonnegative, lower-semicontinuous function defined
on C+[0, T ]. The upper hedging price for the contingent claim with payoff g(S)
at expiration date T and hedge-portfolio constraint (2.2) is

v(0, S(0);α) = sup
λ∈R

E
[
e−rT−αλ(T )g∗(S, λ)

]
, (5.7)

where the geometric Brownian motion S is given by (3.3).

The proof of Theorem 5.3 is given in Section 8.

Remark 5.4 Theorem 5.3 leads immediately to an alternate proof of Theorem
2.2 (Broadie, Cvitanić & Soner). Let ϕ : [0,∞) → [0,∞) be lower semicontinu-
ous, and define g : C+[0, T ] → [0,∞) by g(y) = ϕ(y(T )). In the definition of R,
take I = 1 and t1 = T , i.e., the only allowed discontinuity for processes in R is
at time T . Proposition 5.2 implies that g∗(y, λ) = ϕ

(
y(T )e−λ(T )

)
. According to

Theorem 5.3, the upper hedging price is

v(0, S(0);α) = sup
λ∈R

E
[
e−rT−αλ(T )ϕ

(
S(T )e−λ(T )

)]
, (5.8)

which is obviously bounded above by E
[
e−rT ϕ̂α(S(T ))

]
(see (2.6) for notation).

On the other hand, a selection theorem due to Freedman [9] (see, e.g., [3],
Proposition 7.34) asserts that for each ε > 0 there is a Borel measurable function
ψε : [0,∞) → [0,∞) satisfying

e−αψε(x)ϕ
(
xe−ψε(x)

)
≥

{
ϕ̂α(x) − ε if ϕ̂α(x) < ∞,
1/ε if ϕ̂α(x) = ∞.

Taking λ(t) = I{t=T}ψε(S(T )), we conclude from (5.8) that

v(0, S(0);α) ≥ −ε+E
[
I{ϕ̂α(S(T ))<∞}e

−rT ϕ̂α(S(T ))
]
+

e−rT

ε
P{ϕ̂α(S(T )) = ∞}.

Letting ε ↓ 0, we obtain v(0, S(0);α) ≥ E
[
e−rT ϕ̂α(S(T ))

]
. This proves (2.7).

6 Examples

In this section, we give examples of options whose upper hedging prices can
be computed using either Theorem 3.1 or 5.3. In both these theorems, the
path-dependent payoff function g is assumed to be lower semicontinuous. Some
option contracts are written with upper-semicontinuous payoffs. However, one
can usually trivially modify an upper-semicontinuous payoff to obtain a lower-
semicontinuous payoff, and then our theorems apply. Our first example high-
lights the danger of applying them naively to upper-semicontinuous payoffs.

Example 6.1 (Cactus option) Consider an option whose payoff at expiration
date T is 1 if and only if S(T ) = K, where K is a fixed positive number.
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Otherwise, the payoff is zero. The payoff can be written as ϕ(S(T )), where
ϕ(x) � I{x=K} is upper semicontinuous rather than lower semicontinuous. If we
ignore this fact and attempt to use Theorem 2.2 (which via Remark 5.4 follows
from Theorem 5.3) to compute the upper hedging price, we would first determine

ϕ̂α(x) � sup
λ≥0

e−αλϕ
(
xe−λ

)
=

(
K

x

)α

I{x≥K}, x ≥ 0,

and then compute E
[
e−rT ϕ̂α(S(T ))

]
. This last quantity is strictly positive.

However, the option is clearly worth zero, since there is zero probability that
S(T ) = K. To correctly compute the upper hedging price, one should replace
the given ϕ by its lower-semicontinuous envelope ϕ∗ ≡ 0.

Example 6.2 (Digital put) The payoff for the digital put is

g(S(·)) = I{S(T )<K}

where K is positive. This can be written as g(S(·)) = ϕ(S(T )), where ϕ(x) �
I{x<K}. According to Theorem 2.2, we should first determine the face-lift

ϕ̂α(x) =

{
1 if 0 ≤ x ≤ K,
(K/x)α if x ≥ K,

and then the upper hedging price can be computed to be

v(0, S(0);α) = e−rT
E

[
ϕ̂α(S(T ))

]
= e−rTN(−d) + e(1+α)( 1

2ασ
2−r)T

(
K

S(0)

)α

N
(
d− ασ

√
T

)
,

where d � 1
σ
√
T

[
log S(0)

K +
(
r − 1

2σ
2
)
T

]
.

Example 6.3 (Discrete barrier option) The in-the-money knock-out call
described in Section 1 was discussed in considerable detail in Section 4. Here we
modify the payoff by assuming the option can only knock out at discrete check
times 0 < t1 < t2 < · · · < tI ≤ T , i.e.,

g(S(·)) =
(
S(T ) −K

)+
I∏

i=1

I{S(ti)<B}.

The payoff function g is of the form treated in Proposition 5.2, and thus

g∗(S, λ) =
(
S(T )e−λ(T ) −K

)+
I∏

i=1

I{S(ti)e−λ(ti)<B}.

The supremum in (5.7) is approached by processes λ which are constant between
the check times, and jump at the check times “just enough” to prevent knock-
out. More precisely, let {Bn}∞n=1 be converging up to B. For each n, define

λn(t) � max
{i; ti≤t}

(
logS(ti) − logBn

)+
, 0 ≤ t ≤ T. (6.1)
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Then S(ti)e−λn(ti) ≤ Bn for each i ∈ {1, . . . , I}, and λn is the smallest process
in R which forces these inequalities. Starting with the maximization problem
(5.7) in Theorem 5.3 and applying the arguments which led to (4.6) and (4.7),
we obtain for the upper hedging price

v(0, S(0);α) = lim
n→∞

E
[
e−rT−αλn(T )

(
S(T )e−λn(T ) −K

)+]
= E

[
e−rT−αλ∗(T )

(
S(T )e−λ∗(T ) −K

)+]
,

where λ∗ is given by (6.1) with B in place of Bn. This may be rewritten as

v(0, S(0);α) = e−rT
E

[(
1 ∧ min

1≤i≤I

B

S(ti)

)α (
S(T )

(
1 ∧ min

1≤i≤I

B

S(ti)

)
−K

)+ ]
.

The computation has been reduced to a finite-dimensional Gaussian integration.
If the barrier depends on time, we need only to replace the ratios B/S(ti) by
B(ti)/S(ti) in the last formula.

Example 6.4 (Vanilla put) We compute the upper hedging price of the va-
nilla put as a prelude to Examples 6.5 and 6.6. The payoff of the vanilla put
is g(S(·)) = ϕ(S(T )), where ϕ(x) = (K − x)+ and K is a positive constant.
According to Proposition 5.2 and Theorem 5.3, the upper hedging price is

v(0, S(0);α) = sup
λ∈R

E
[
e−rT−αλ(T )

(
K − S(T )e−λ(T )

)+]
, (6.2)

where we take I = 1 and t1 = T in the definition of R, meaning that the processes
are continuous except for a possible jump at time T . Theorem 2.2 applies, and
asserts that v(0, S(0);α) = e−rT

E
[
ϕ̂α(S(T );K)

]
, where the face-lift is given by

ϕ̂α(x;K) � sup
λ≥0

e−αλ
(
K − xe−λ

)+ =

{
K − x if 0 ≤ x ≤ αK

1+α ,
K

1+α

(
αK

(1+α)x

)α if x ≥ αK
1+α .

(6.3)

On the other hand, in the case α > 0, maximizing the integrand in (6.2) for
every value of S(T ) shows that a process λ ∈ R is a maximizer if

λ(T ) =
(

logS(T ) − log
αK

1 + α

)+

.

Example 6.5 (Lookback put) We consider the lookback put payoff function
g(S(·)) = M(S) − S(T ) with maximum M(S) � sup0≤t≤T S(t). According to
Proposition 5.2 and Theorem 5.3, the upper hedging price is

v(0, S(0);α) = sup
λ∈R

E
[
e−rT−αλ(T )

(
M

(
Se−λ

)
− S(T )e−λ(T )

)]
.

We maximize M(Se−λ) over λ by choosing λ to be identically zero on [0, T ),
and this results in M(Se−λ) = M(S). The upper hedging price is obtained by
then choosing λ(T ) ≥ 0 so as to maximize E

[
e−rT−αλ(T )

(
M(S)−S(T )e−λ(T )

)]
.
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This is the maximization problem of (6.2) with M(S) replacing the strike price
K. While Theorem 2.2 does not apply, direct calculation as in Example 6.4 for
α > 0 shows that a maximizing process in R is given by

λ∗(t) =
(

logS(T ) − log
αM(S)
1 + α

)+

I{t=T}, 0 ≤ t ≤ T.

Example 6.6 (Asian put) We next consider the Asian payoff function given
by g(S(·)) =

(
A(S)−S(T )

)+ with arithmetic average A(S) � 1
T

∫ T

0
S(t) dt. The

upper hedging price is

v(0, S(0);α) = sup
λ∈R

E
[
e−rT−αλ(T )

(
A(Se−λ) − S(T )e−λ(T )

)+ ]
.

Once again, for α > 0, a maximizing λ is identically zero on [0, T ), and for
this process A(Se−λ) = A(S). The upper hedging price is obtained by choosing
λ(T ) ≥ 0 so as to maximize E

[
e−rT−αλ(T )

(
A(S) − S(T )e−λ(T )

)
+
]
. This is

the maximization problem of (6.2) with A(S) replacing the strike price K. A
maximizing process in R is

λ∗(t) =
(

logS(T ) − log
αA(S)
1 + α

)+

I{t=T}, t ∈ [0, T ].

Example 6.7 (Book of two barrier options) Upper hedging prices for in-
dividual exotic options are often too high to permit sales except in thinly traded
over-the-counter markets. However, the theory developed in this paper can be
applied to books of derivatives, and because the upper hedging methodology ex-
ploits natural hedges within the book, the upper hedging price of the book can
be considerably less than the sum of the upper hedging prices of the individual
assets in the book. The difficulty with pricing books, of course, is in solving the
resulting stochastic control problem of Theorem 3.1 or 5.3.

In this example, we determine the upper hedging price of a book of two in-
the-money knock-out calls of the type discussed in Sections 1 and 4. These calls
have a common maturity T , a common strike price K, and the barriers L and
U are related by 0 < K < L < U . The “low barrier” call has payoff

gL(S(·)) =
(
S(T ) −K

)+
I{max0≤t≤T S(t)<L},

and the “high barrier” call has corresponing payoff gU(S(·)). Let vL(t, x;α) and
vU(t, x;α) be the functions given by (4.8), (4.10) with B replaced by L and
U , respectively. These functions provide the upper hedging prices of the calls,
except at the respective barriers. They further satisfy their respective versions
of (4.13), (4.14) and (4.15).

Using Theorem 3.1 to determine the upper hedging price of a book consisting
of one call with barrier U and κ ≥ 0 calls with barrier L, we must compute

v(0, S(0);α) = sup
λ∈C

E
[
e−rT−αλ(T )

(
κgL(Se−λ) + gU(Se−λ)

)]
. (6.4)
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Using notation from (4.4), we shall instead compute

v∗(0, S(0);α)

= sup
λ∈C

E
[
e−rT−αλ(T )(Sλ(T ) −K)+

(
κI{Mλ(T )≤L} + I{Mλ(T )≤U}

)]
(6.5)

and subsequently argue that v(0, S(0);α) and v∗(0, S(0);α) agree except when
S(0) = L or S(0) = U , in which cases we have v(0, L;α) = limx↓L v∗(0, x;α)
and v(0, U ;α) = 0.

We first construct a function w(t, x, y) which we shall show is almost the
upper hedging price of the book at time t ∈ [0, T ] if at that time the stock price is
S(t) = x > 0 and the maximum stock price to date is M(t) � max0≤u≤t S(u) =
y ≥ x. We begin by setting

w(t, x, y) � vU(t, x;α)I{y≤U}, 0 ≤ t ≤ T , y > L, 0 < x ≤ y. (6.6)

We next define κ̃ � κ + 1 and the deterministic time

t∗ � T ∧ min
{
t ≥ 0; κ̃vL(s, L;α) ≥ vU(s, L;α) ∀ s ∈ [t, T ]

}
.

We set

w(t, x, y) � κ̃vL(t, x;α), t∗ < t ≤ T , 0 < x ≤ y ≤ L. (6.7)

Finally, for 0 ≤ t ≤ t∗ and 0 ≤ x ≤ y ≤ L, we define w(t, x, y) to be the solution
to the Black-Scholes partial differential equation

wt(t, x) + rxwx(t, x) +
1
2
σ2x2wxx(t, x) = rw(t, x), (6.8)

subject to the boundary conditions

w(t, 0) = 0, 0 ≤ t < t∗, (6.9)

w(t, L) = vU(t, L;α), 0 ≤ t < t∗, (6.10)

w(t∗, x) = κ̃vL(t∗, x;α), 0 < x ≤ L. (6.11)

In other words, in the region 0 ≤ t ≤ t∗, 0 < x ≤ y ≤ L, the function w(t, x, y)
is the Black-Scholes price of a derivative security which knocks out at L, paying
rebate vU(s, L;α) if the knock-out occurs at time s < t∗, and otherwise expires at
time t∗, paying κ̃vL(t∗, S(t∗);α) upon expiration. Because αw(t, x) + xwx(t, x)
also satisfies the Black-Scholes equation and αw(t, x) + xwx(t, x) ≥ 0 on the
boundary

(
{t∗}×[0, L)

)
∪

(
[0, t∗)×{L}

)
(see (4.15), satisfied by both vL and vU ),

we have from the maximum principle that

αw(t, x) + xwx(t, x) ≥ 0, 0 ≤ t ≤ t∗, 0 ≤ x ≤ L. (6.12)

We show that v∗(0, S(0);α) given by (6.5) is actually w(0, S(0), S(0)). If
S(0) > U , then both v∗(0, S(0);α) and w(0, S(0), S(0)) are zero. If L < S(0) ≤
U , then the computation of v∗(t, S(0);α) reduces to the single-option problem

19



solved in Corollary 4.1 with B = U , and hence v∗(0, S(0);α) = vU(0, S(0);α) =
w(t, S(0), S(0)) by (6.6).

In remains to prove the equality when 0 < S(0) ≤ L. This requires the proof
of an inequality in each direction. For the first inequality, we let λ ∈ C be given
and define ΘL � inf{t ≥ 0; Sλ(t) > L}, ΘU � inf{t ≥ 0; Sλ(t) > U}. Itô’s
formula implies

w(0, S(0), S(0))

= w(0, S(0)) (6.13)

= E
[
e−r(t∗∧ΘL)−αλ(t∗∧ΘL)w(t∗ ∧ ΘL, Sλ(t∗ ∧ ΘL))

]
+ E

[∫ t∗∧ΘL

0

e−rt−αλ(t)
(
αw(t, Sλ(t)) + Sλ(t)w(t, Sλ(t))

)
dλ(t)

]
≥ E

[
e−rΘL−αλ(ΘL)vU(ΘL, L;α)I{ΘL<t∗}

+ κ̃e−rt∗−αλ(t∗)vL(t∗, Sλ(t∗);α)I{ΘL≥t∗}
]
.

We continue with the case ΘL < t∗, again using Itô’s formula, this time to obtain

E
[
e−rΘL−αλ(ΘL)vU(ΘL, L;α)I{ΘL<t∗}

]
= E

[
e−r(T∧ΘU )−αλ(T∧ΘU )vU

(
T ∧ ΘU , Sλ(T ∧ ΘU );α

)
I{ΘL<t∗}

]
+ E

[∫ T∧ΘU

ΘL

e−rt−αλ(t)
(
αvU(t, Sλ(t);α) (6.14)

+ Sλ(t)vUx(t, Sλ(t);α)
)
dλ(t)I{ΘL<t∗}

]
≥ E

[
e−rΘU−αλ(ΘU )vU(ΘU , U ;α)I{ΘL<t∗,ΘU<T}

+ e−rT−αλ(T )vU(T, Sλ(T );α)I{ΘL<t∗,ΘU≥T}
]

≥ E
[
e−rT−αλ(T )

(
Sλ(T ) −K

)+
I{ΘL<t∗,Mλ(T )≤U}

]
.

We also continue (6.13) in the case ΘL ≥ t∗. In this case, we have

κ̃E
[
e−rt∗−αλ(t∗)vL(t∗, Sλ(t∗);α)I{ΘL≥t∗}

]
= κ̃E

[
e−r(T∧ΘL)−αλ(T∧ΘL)vL

(
T ∧ ΘL, Sλ(T ∧ ΘL);α

)
I{ΘL≥t∗}

]
+ κ̃E

[∫ T∧ΘL

t∗
e−rt−αλ(t)

(
αvL(t, Sλ(t);α) (6.15)

+ Sλ(t)vLx (t, Sλ(t);α)
)
dλ(t)I{ΘL≥t∗}

]
≥ κ̃E

[
e−rΘL−αλ(ΘL)vL(ΘL, L;α)I{t∗≤ΘL<T}

]
+ κ̃E

[
e−rT−αλ(T )vL(T, Sλ(T );α)I{ΘL≥T}

]
≥ E

[
e−rΘL−αλ(ΘL)vU(ΘL, L;α)I{t∗≤ΘL<T}

]
+ κ̃E

[
e−rT−αλ(T )

(
Sλ(T ) −K

)+
I{Mλ(T )≤L}

]
,
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where the definition of t∗ is used to obtain the last inequality. Finally, Itô’s
formula implies

E
[
e−rΘL−αλ(ΘL)vU(ΘL, L;α)I{t∗≤ΘL<T}

]
= E

[
e−r(T∧ΘU )−αλ(T∧ΘU )vU(T ∧ ΘU , Sλ(T ∧ ΘU );α)I{t∗≤ΘL<T}

]
+ E

[∫ T∧ΘU

ΘL

e−rt−αλ(t)
(
αvU(t, Sλ(t);α) (6.16)

+ Sλ(t)vUx(t, Sλ(t);α)
)
dλ(t)I{t∗≤ΘL<T}

]
≥ E

[
e−rT−αλ(T )vU(T, Sλ(T );α)I{t∗≤ΘL<T,ΘU≥T}

]
≥ E

[
e−rT−αλ(T )

(
Sλ(T ) −K

)+
I{t∗≤ΘL<T,Mλ(T )≤U}

]
.

Combining (6.13)–(6.16), we see that

w(0, S(0), S(0)) (6.17)

≥ E
[
e−rT−αλ(T )

(
Sλ(T ) −K

)+(
I{ΘL<T,Mλ(T )≤U} + κ̃I{Mλ(T )≤L}

)]
= E

[
e−rT−αλ(T )

(
Sλ(T ) −K

)+(
κI{Mλ(T )≤L} + I{Mλ(T )≤U}

)]
.

Recalling (6.5) and using the fact that λ ∈ C is arbitrary, we conclude

w(0, S(0), S(0)) ≥ v∗(0, S(0);α). (6.18)

For the reverse inequality in the case 0 < S(0) ≤ L, we define

λ∗(t) =


max

0≤u≤t

(
logS(u) − logU

)+ if 0 ≤ t ≤ t∗,

max
0≤u≤t

(
logS(u) − logU

)+
I{M(t∗)>L}

+ max
t∗≤u≤t

(
logS(u) − logL

)+
I{M(t∗)≤L} if t∗ ≤ t ≤ T.

(6.19)

Then Sλ∗ never exceeds U , and if by time t∗, Sλ∗ has not exceeded L, then it
never exceeds L. The process λ∗ is the minimal process which guarantees these
properties; in particular, λ∗ grows only when Sλ∗ is at either U or L. Replacing
λ in (6.13) by λ∗, we have equality because λ∗ ≡ 0 on [0, t∗ ∧ ΘL]. Replacing
λ by λ∗ in (6.14), we again have equality because on the set {ΘL < t∗}, the
process λ∗ grows only when Sλ∗ = U , and

αvU(t, U ;α) + U vUx(t, U ;α) = 0.

Furthermore, {ΘL < t∗,ΘU < T} = ∅, since Mλ∗(T ) ≤ U . With λ replaced by
λ∗, (6.15) becomes an equality because on the set t∗ ≤ t ≤ T ∧ ΘL, the process
λ∗ grows only when Sλ∗ = L and

αvL(t, L;α) + LvLx (t, L;α) = 0.
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Furthermore, {t∗ ≤ ΘL < T} = ∅ because Mλ∗(T ) ≤ L on ΘL(T ) ≥ t∗. For
this same reason, all terms in (6.16) are zero when λ is replaced by λ∗. This
leads to equality in (6.17) when λ is replaced by λ∗, and according to (6.5).

w(0, S(0), S(0)) = E
[
e−rT−αλ∗(T )(Sλ∗(T ) −K)+

(
κI{Mλ∗ (T )≤L} + I{Mλ∗ (T )≤U}

)]
≤ v∗(0, S(0);α). (6.20)

Due to (6.18), equality has to hold here.
To establish the relationship between v∗(0, S(0);α) and the upper hedging

price v(0, S(0);α) of (6.4), we start with the case S(0) < U and choose two
sequences of barriers {Ln}∞n=1 and {Un}∞n=1 with Ln ↑ L and Un ↑ U satisfying
Ln < L ≤ Un and S(0) ≤ Un < U for all n ∈ N. Let λn be given by (6.19) with L
and U replaced by Ln and Un, respectively. Then λn ∈ C and λn ↓ λ∗ pointwise,
so Sλn ↑ Sλ∗ and Mλn ↑ Mλ∗ pointwise. In addition, {Mλn(T ) ≤ Un} = Ω =
{Mλ∗(T ) ≤ U} and for S(0) ∈ (0, U) \ {L}, we also have

lim
n→∞

I{Mλn(T )≤Ln} = lim
n→∞

I{M(t∗)≤Ln} = I{M(t∗)≤L} = I{Mλ∗ (T )≤L}, a.s.

It follows from (6.4), Ln < L, Un < U , Fatou’s lemma and (6.20) with equality
that, for S(0) ∈ (0, U) \ {L},

v(0, S(0);α)

≥ lim inf
n→∞

E
[
e−rT−λn(T )

(
Sλn(T ) −K

)+(
κI{Mλn(T )<L} + I{Mλn(T )<U}

)]
≥ lim inf

n→∞
E

[
e−rT−λn(T )

(
Sλn(T ) −K

)+(
κI{Mλn(T )≤Ln} + I{Mλn(T )≤Un}

)]
≥ E

[
e−rT−λ∗(T )

(
Sλ∗(T ) −K

)+(
κI{Mλ∗ (T )≤L} + I{Mλ∗ (T )≤U}

)]
= v∗(0, S(0);α).

The reverse inequality is obvious. Since the case S(0) > U is trivial, we have
established

v(0, S(0);α) = v∗(0, S(0);α), ∀S(0) ∈ (0,∞) \ {L,U}.
It is clear that v(0, U ;α) = 0, since both options are knocked-out at the initial
time. Finally, if S(0) = L, then the “low barrier” option is knocked out at the
initial time, and by Corollary 4.1,

v(0, L;α) = vU(0, L;α) = lim
x↓L

vU(0, x;α) = lim
x↓L

v∗(0, x;α).

The construction of the upper hedging price for the book of two barrier options
is complete. ♦

7 Proof of Theorem 3.1

We denote by

L �
{
λ;λ is a nondecreasing, {F(t); 0 ≤ t ≤ T}-adapted process,

Lipschitz in t uniformly in ω, with λ(0) = 0
}
,
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the class of processes over which the supremum in (2.4) is taken. In a first step,
we show that the supremum in (2.4) can be reduced to the set Lpl of piecewise
linear, {FW(t); 0 ≤ t ≤ T}-adapted processes λ ∈ L, meaning that for every
λ ∈ Lpl there exist m ∈ N, a partition 0 = t0 < t1 < · · · < tm = T , and
bounded, FW(ti)-measurable ai : Ω → [0,∞) such that

λ(t, ω) =
m−1∑
i=0

ai(ω)
(
(ti+1 ∧ t) − ti

)+
, t ∈ [0, T ], ω ∈ Ω. (7.1)

Lemma 7.1 Let g : C+[0, T ] → [0,∞) be a measurable function. We have

sup
λ∈L

Eλ

[
e−rT−αλ(T )g(S)

]
= sup

λ∈Lpl

Eλ

[
e−rT−αλ(T )g(S)

]
.

Proof: Since Lpl ⊂ L, there is just one inequality to prove. Consider λ ∈ L.
Then there is a bounded, adapted process λ′ : [0, T ] × Ω → [0,∞) such that

λ(t, ω) =
∫ t

0

λ′(s, ω) ds, t ∈ [0, T ].

As in the construction of the stochastic integral (see, e.g., [12], Chap. 3, Lemma
2.4), one can prove the existence of a sequence {λ′

n}n∈N of processes λ′
n : [0, T ]×

Ω → [0,∞) of the form

λ′
n(t, ω) =

mn−1∑
i=0

ai,n(ω)1(ti,n,ti+1,n](t), t ∈ [0, T ], ω ∈ Ω,

where mn ∈ N, 0 = t0,n < t1,n < · · · < tmn,n = T and every ai,n : Ω → [0,∞) is
F(ti,n)-measurable and bounded by the Lipschitz constant of λ, such that

lim
n→∞

E

[∫ T

0

|λ′
n(t) − λ′(t)|2 dt

]
= 0.

By changing ai,n on a set of P-measure zero if necessary, we may assume that
every ai,n is FW(ti,n)-measurable. By the definition of the stochastic integral,

lim
n→∞

∫ T

0

λ′
n(t) dW (t) =

∫ T

0

λ′(t) dW (t) (7.2)

in L2(Ω,F(T ),P). Passing to a subsequence if necessary, we may assume that
limn→∞

∫ T

0
|λ′

n(t) − λ′(t)|2 dt = 0 P-almost surely and that the convergence in
(7.2) is also P-almost sure. Define

λn(t, ω) =
∫ t

0

λ′
n(s, ω) ds, t ∈ [0, T ], ω ∈ Ω.

Then λn(T ) → λ(T ) almost surely. Let Zλ denote the density given by (2.5)
and let Zλn denote the corresponding density for λn. By Fatou’s lemma,

Eλ[e−αλ(T )f ] = E[e−αλ(T )fZλ]

≤ lim inf
n→∞

E[e−αλn(T )fZλn ] = lim inf
n→∞

Eλn [e−αλn(T )f ],

where f � e−rT g(S). ♦
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Lemma 7.2 Let g : C+[0, T ] → [0,∞) be a lower-semicontinuous function. We
have

sup
λ∈Lpl

E
[
e−rT−αλ(T )g

(
Se−λ

)]
= sup

λ∈C
E

[
e−rT−αλ(T )g

(
Se−λ

)]
.

Proof: Since Lpl ⊂ C, there is just one inequality to prove. Consider λ ∈ C.
Given n ∈ N, define a0,n = 0, t0,n = 0, ti,n = iT2−n and

ai,n(ω) = min
{

2n,
λ(ti,n, ω) − λ(ti−1,n, ω)

T2−n

}
(7.3)

for all i ∈ {1, 2, . . . , 2n} and ω ∈ Ω. By changing ai,n on a set of P-measure
zero if necessary, we may assume that ai,n is FW(ti,n)-measurable for every
i ∈ {1, . . . , 2n}. Define λn ∈ Lpl by

λn(t, ω) =
2n−1∑
i=0

ai,n(ω)
(
(ti+1,n ∧ t) − ti,n

)+
, t ∈ [0, T ], ω ∈ Ω.

To prove the P-almost sure uniform convergence of {λn}n∈N to λ, consider
an ω ∈ Ω so that (7.3) holds for all n ∈ N and i ∈ {1, . . . , 2n}. Since t �→ λ(t, ω)
is uniformly continuous and nondecreasing on [0, T ], the modulus of continuity

m(t, ω) = sup
s∈[0,T−t]

(λ(s + t, ω) − λ(s, ω)), t ∈ [0, T ],

is a nondecreasing continuous function with m(0, ω) = 0. In particular, there
exists k ∈ N satisfying m(T2−k, ω) < T . For every n ≥ k and i ∈ {1, . . . , 2n},
the quotient in (7.3) is less than 2n; hence λn(ti+1,n, ω) = λ(ti,n, ω) for all
i ∈ {0, . . . , 2n−1}. If t ∈ [ti,n, ti+1,n] with i ∈ {1, . . . , 2n−1}, then λ(ti−1,n, ω) =
λn(ti,n, ω) ≤ λn(t, ω) ≤ λn(ti+1,n, ω) = λ(ti,n, ω), because λn is nondecreasing.
Note that λn(t, ω) = 0 for t ∈ [0, t1,n]. Because λ is also nondecreasing, we have

sup
t∈[0,T ]

|λ(t, ω) − λn(t, ω)| ≤ m(T2−n, ω) ↓ 0 as n → ∞.

Using the lower semicontinuity of g and Fatou’s lemma, we compute

E
[
e−rT−αλ(T )g

(
Se−λ

)]
≤ E

[
e−rT−αλ(T ) lim inf

n→∞
g
(
Se−λn

)]
≤ lim inf

n→∞
E

[
e−rT−αλn(T )g

(
Se−λn

)]
,

which implies the desired inequality. ♦

Proof of Theorem 3.1: By Theorem 2.1 and Lemmas 7.1, 7.2, it suffices to
show

sup
λ∈Lpl

Eλ

[
e−rT−αλ(T )g(S)

]
= sup

λ∈Lpl

E
[
e−rT−αλ(T )g

(
Se−λ

)]
.

In other words, for each λ ∈ Lpl, we will construct a λ ∈ Lpl such that

Eλ

[
e−rT−αλ(T )g(S)

]
= E

[
e−rT−αλ(T )g

(
Se−λ

)]
, (7.4)
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and conversely, for each λ ∈ Lpl, we will construct λ ∈ Lpl satisfying (7.4).
For each λ ∈ Lpl, we define ϕλ : Ω → Ω by

ϕλ(ω)(t) � ω(t) +
1
σ
λ(t, ω), t ∈ [0, T ], ω ∈ Ω. (7.5)

Note that ϕλ is FW(t)/FW(t)-measurable for every t ∈ [0, T ]. We show that ϕλ

is bijective. To see that ϕλ is injective, we suppose that ϕλ(ω1) = ϕλ(ω2). The
process λ has a representation of the form (7.1), and in terms of this represen-
tation we define I � max{i; ω1(t) = ω2(t) ∀ t ∈ [0, ti]}. Note that 0 ≤ I ≤ m. If
I < m, then ai(ω1) = ai(ω2) for all i ≤ I, which implies that λ(t, ω1) = λ(t, ω2)
for all t ≤ tI+1. Therefore, for 0 ≤ t ≤ tI+1, we have

ω1(t) = ϕλ(ω1)(t) −
1
σ
λ(t, ω1) = ϕλ(ω2)(t) −

1
σ
λ(t, ω2) = ω2(t),

and the definition of I is contradicted. It follows that I = m and ω1 = ω2. To
see that ϕλ is surjective, we let ω ∈ Ω be given. We set ω(0) = 0 and define
inductively, for i ∈ {0, 1, . . . ,m− 1},

ω(t) � ω(t) − 1
σ

i∑
j=0

aj(ω)
(
(tj+1 ∧ t) − tj

)+
, ti < t ≤ ti+1.

Then ω = ϕλ(ω). This construction also shows that ϕ−1
λ is FW(t)/FW(t)-

measurable for every t ∈ [0, T ].
Now let λ ∈ Lpl be given. We define λ ∈ Lpl by

λ(·, ω) � λ(·, ϕ−1
λ (ω)), ∀ω ∈ Ω, (7.6)

and verify that (7.4) holds. According to Girsanov’s theorem, if we impose on
ω the measure Pλ given by (2.5), then ω = ϕλ(ω) is distributed according to
Wiener measure P. Therefore,

Eλ

[
e−rT−αλ(T )g(S)

]
=

∫
Ω

e−rT−αλ(T,ω)g
(
S(0) exp(σW (·, ω) + µ)

)
Pλ(dω)

=
∫

Ω

e−rT−αλ(T,ω)g
(
S(0) exp(σW (·, ω) + λ(·, ω) + µ− λ(·, ω))

)
Pλ(dω)

=
∫

Ω

e−rT−αλ(T,ω)g
(
S(0) exp(σω + µ− λ(·, ω))

)
Pλ(dω)

=
∫

Ω

e−rT−αλ(T,ω)g
(
S(0) exp(σω + µ− λ(·, ω))

)
P(dω)

=
∫

Ω

e−rT−αλ(T,ω)g
(
S(0) exp(σW (·, ω) + µ− λ(·, ω))

)
P(dω)

= E
[
e−rT−αλ(T )g

(
Se−λ

)]
,

which is (7.4).
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For the converse, let λ ∈ Lpl be given. The function ψλ : Ω → Ω defined by

ψλ(ω)(t) � ω(t) − 1
σ
λ(t, ω), t ∈ [0, T ], ω ∈ Ω

is bijective, and both it and its inverse are FW(t)/FW(t)-measurable for every
t ∈ [0, T ] (it is formally merely ϕ−λ). Therefore, we can define λ ∈ Lpl by

λ(·, ω) � λ(·, ψ−1
λ

(ω)), ∀ω ∈ Ω. (7.7)

According to the definitions and with the notation ω = ψλ(ω), we have

ϕλ(ω) = ω +
1
σ
λ(·, ω) = ψλ(ω) +

1
σ
λ(·, ω) = ω.

In other words, ϕλ and ψλ are inverse functions and the relationship (7.7) be-
tween λ and λ coincides with the relationship (7.6). It follows that (7.4) again
holds, and the theorem is proved. ♦

8 Proof of Theorem 5.3

We use the notation introduced in Section 5.

Lemma 8.1 Given g : C+[0, T ] → [0,∞), the map g∗ : C+[0, T ] × R[0, T ] →
[0,∞) defined by (5.3) is lower semicontinuous in the second argument with
respect to the topology of pointwise convergence on R[0, T ]. If g is lower semi-
continuous, then

g∗(y, λ) = g(ye−λ) ∀ (y, λ) ∈ C+[0, T ] × (R[0, T ] ∩ C+[0, T ]). (8.1)

Proof: To prove lower semicontinuity in the second argument, let y ∈ C+[0, T ]
and λ ∈ R[0, T ] be given, and let λn → λ pointwise, where each λn is in R[0, T ].
Let ε > 0 be given. According to the definition of g∗, for each n we may choose
ηn ∈ R[0, T ] ∩ C+[0, T ] such that g(ye−ηn) ≤ ε + g∗(y, λn) and d(ηn, λn) < 1

n .
But then ηn → λ pointwise, which implies

g∗(y, λ) ≤ lim inf
n→∞

g(ye−ηn) ≤ ε + lim inf
n→∞

g∗(y, λn).

Since ε > 0 is arbitrary, we have lower semicontinuity of g∗(y, ·) at λ.
Assume now that g is lower semicontinuous and (y, λ) ∈ C+[0, T ]×(R[0, T ]∩

C+[0, T ]). Let λn → λ pointwise. Remark 5.1 shows that λn → λ uniformly. We
have g

(
ye−λ

)
≤ lim infn→∞ g

(
ye−λn

)
, and minimizing over sequences {λn}∞n=1

we obtain g(ye−λ) ≤ g∗(y, λ). Using the constant sequence {λ}∞n=1, we obtain
the reverse inequality. ♦

Proof of Theorem 5.3: Since C ⊂ R, the inequality

v(0, S(0);α) ≤ sup
λ∈R

E
[
e−rT−αλ(T )g∗(S, λ)

]
(8.2)
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follows immediately from Theorem 3.1 and Lemma 8.1. For the reverse inequal-
ity, we show that

sup
λ∈C

E
[
e−rT−αλ(T )g(Se−λ)

]
≥ sup

λ∈R
E

[
e−rT−αλ(T )g∗(S, λ)

]
. (8.3)

To do this, we choose a process λ ∈ R, and approximate it by a sequence {λn}∞n=1

of processes in C.
Let λ ∈ R be given, and assume for the moment that λ(T ) ≤ C. We need to

approximate λ by processes which are continuous. According to the definition
of R, there are finitely many pre-specified times 0 < t1 < · · · < tI ≤ T at which
λ can be discontinuous. Denote the jumps of λ by

αi � λ(ti) − λ(ti−), i = 1, . . . , I,

and denote the continuous part of λ by

λc(t) � λ(t) −
∑

{i;ti≤t}
αi, 0 ≤ t ≤ T.

Set Mi(t) � E[αi |F(t)] for 0 ≤ t ≤ T . Each Mi is a bounded, nonnegative
martingale, relative to the Brownian filtration {F(t); 0 ≤ t ≤ T}, and must
therefore have a continuous modification ([12], Theorem 3.13 of Chapter 1 and
Problem 4.16 of Chapter 3). Without loss of generality, we assume therefore
that each Mi is continuous.

Choose N ∈ N so that t1 ≥ 1/N . For all n ≥ N and t ∈ [0, T ], define

λn(t) � λc(t) +
I∑

i=1

[
1 ∧ n

(
t− ti +

1
n

)+
]

max
ti− 1

n≤s≤t∧ti
Mi(s).

Then λn is continuous, adapted, nondecreasing, and satisfies λn(0) = 0. If, in
addition, n satisfies ti+1 − ti ≥ 1/n for all i ∈ {1, . . . , I − 1}, then

λn(ti) = λc(ti) +
i∑

j=1

max
tj− 1

n≤s≤tj
Mj(s)

for all i ∈ {1, . . . , I}; in particular,

lim
n→∞

λn(ti) = λc(ti) +
i∑

j=1

αj = λ(ti).

For t ∈ [0, t1) and sufficiently large n, we have t ≤ t1 − 1/n and λn(t) = λc(t) =
λ(t). For t ∈ (ti, ti+1), we have t ≤ ti+1 − 1/n for sufficiently large n, and then

λn(t) = λc(t) +
i∑

j=1

max
tj− 1

n≤s≤tj
Mj(s) → λc(t) +

i∑
j=1

αj = λ(t).

In other words, λn ∈ C and λn → λ pointwise almost surely.

27



We relax the condition that λ(T ) ≤ C. Assuming only that λ(T ) < ∞
almost surely, we define for each m ∈ N the process λm = m ∧ λ. We have just
proved that for each m we may construct a sequence {λm,n}∞n=N in C such that
λm,n → λm pointwise almost surely as n → ∞. Let d be the metric of pointwise
convergence on R[0, T ] defined in Section 5. We may choose a subsequence
{λmk

}∞k=1 such that P
{
d(λmk

, λ) ≥ 1/k
}
≤ 2−k for all k ∈ N, and then choose

nk such that P
{
d(λmk,nk

, λmk
) ≥ 1/k

}
≤ 2−k. Then

P

{
d(λmk,nk

, λ) ≥ 2
k

}
≤ P

{
d(λmk,nk

, λmk
) ≥ 1

k
or d(λmk

, λ) ≥ 1
k

}
≤ 2−k+1.

The Borel-Cantelli Lemma implies P
{
d(λmk,nk

, λ) ≥ 2/k infinitely often
}

= 0,
and hence λmk,nk

→ λ pointwise almost surely as k → ∞.
In either case, whether λ ∈ R is bounded or not, there is a sequence {λn}∞n=N

of processes in C such that λn → λ pointwise almost surely. For this sequence,
we have from Fatou’s Lemma and the lower semicontinuity of g∗(S, ·) that

sup
η∈C

E
[
e−rT−αη(T )g(Se−η)

]
≥ lim inf

n→∞
E

[
e−rT−αλn(T )g

(
Se−λn

)]
≥ E

[
lim inf
n→∞

e−rT−αλn(T )g
(
Se−λn

)]
≥ E

[
e−rT−αλ(T )g∗(S, λ)

]
.

Taking the supremum of the right-hand side over λ ∈ R, we obtain (8.3). ♦
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