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Abstract

This paper provides a short introduction into the handling of FX im-
plied volatility market data - especially their inter- and extrapolation
across delta space and time. We discuss a low-dimensional Gaussian kernel
approach as method of choice showing several advantages over usual smile
interpolation methods like e.g. cubic splines.

1 FX Implied Volatility

Implied volatilities for FX Vanilla options are normally quoted against Black
Scholes deltas. Note that these deltas already process the volatility to be quoted
which makes iterative processes necessary to determine unique strike-volatility
coordinates. However, under normal circumstances the mapping works via a
quickly converging fixed point iteration.

Proposition 1.1 (Delta-Strike Fixed Point Iteration)
Let

∆n : A 7→ A, A ⊂ (0, 1) be a mapping, defined by

σ0 = σATM ,

∆0 = ∆(KCall, σATM )

∆n+1 = e−rf (T−t)N(d1(∆n))

= e−rf (T−t)N(
ln(S/K) + (rd − rf + σ2(∆n)

2 )(T − t)
σ(∆n)

√
T − t

)

For sufficiently large σ(∆n) and a smooth, differentiable volatility smile the
sequence converges for n → ∞ against the unique fixed point ∆∗ ∈ A with
σ∗ = σ(∆∗), corresponding to strike K.
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Usual FX smiles normally satisfy the above mentioned regularity conditions.
More details concerning this proposition can be found in Wystup [5]. However
note, that already here smoothness is demanded - which directly leads to the
issue of an appropriate smile interpolation.

2 Interpolation

Before the discussion of specific interpolation methods it is recommended to
take a step backwards and remember Rebonato‘s well-known statement of im-
plied volatility as the wrong number in the wrong formula to obtain the right
price [3]. So the explanatory power of implied volatilities for the dynamics of a
stochastic process remains limited. Implied volatilities give a lattice on which
marginal distributions can be constructed. However, even using many data
points to generate marginal distributions, forward distributions and extremal
distributions - determining the prices of e.g. compound and barrier products
- cannot be uniquely defined by implied volatilities (see Tistaert et al.[4] for a
discussion of this.
The attempt to capture FX smile features can lead into two different general
approaches.

2.1 Parametrisation

One possibility to express smile or skew patterns is just to capture it as the
calibration parameter set of an arbitrary stochastic volatility or jump diffusion
model which generates the observed market implied volatilities. However, as
spreads are rather narrow in liquid FX options markets, it is preferred to exactly
fit the given input volatilities. This automatically leads to an interpolation
approach.

2.2 Pure Interpolation

As an introduction we would like to pose four requirements for an acceptable
volatility surface interpolation:

1. Smoothness in the sense of continuous differentiability. Especially with
respect to the possible application of Dupire-style local volatility models it
is crucial to construct an interpolation which is at least C2. This becomes
obvious when looking at the expression for the local volatility in this
context:

σlocalt (S(t)) =

(
2
∂Call(S,t;K,T )

∂T + ∂Call(S,t;K,T )
∂K

K2 ∂
2Call(S,t;K,T )

∂K2

) 1
2

.

Note in addition that local volatilities can directly be extracted from delta-
based FX volatility surfaces, i.e. the Dupire formula can alternatively be
expressed in terms of delta. See Hakala and Wystup [2] for details.
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2. Absence of oscillations, which is guaranteed if the sign of the curvature
of the surface does not change over different strike or delta levels

3. Absence of arbitrage possibilities on single smiles of the surface as well as
absence of calendar arbitrage

4. A reasonable extrapolation available for the interpolation method

A classical interpolation method widely spread are cubic splines. They at-
tempt to fit surfaces by fitting piecewise cubic polynomials to given data points.
They are specified by matching their second derivatives at each intersection.
While this ensures the required smoothness by construction, it does not pre-
vent oscillations - which directly leads to the danger of arbitrage possibilities -
nor does it define how to extrapolate the smile. We therefore introduce the con-
cept of a slice kernel volatility surface - as described in Hakala and Wystup [2]
- as an alternative:

Definition 2.1 (Slice Kernel) Let (x1, y1), (x2, y2)..., (xn, yn) be n given points
and g : R 7→ R a smooth function which fulfils

g(xn) = yn, ∀n = 1, ..., n.

A smooth interpolation is then given by

g(x) :=
1

Φλ(x)

N∑
i=1

αiKλ(‖x− xi‖),

where

Φλ(x) :=
N∑
i=1

Kλ(‖x− xi‖)

and

Kλ(u) := exp
{
− u2

2λ2

}
.

The described kernel is also called Gaussian Kernel. The interpolation reduces
to the determination of the αi which is straightforward via solving a linear
equation system. Note that λ remains as free smoothing parameter which also
impacts the condition of the equation system. At the same time it can be used
to fine-tune the extrapolation behavior of the kernel.
Normally the slice kernel produces reasonable output smiles based on a max-
imum of seven delta-volatility points. Then it fulfills all above mentioned re-
quirements: It is C∞, does not create oscillations, passes typical no-arbitrage
conditions as they are e.g. posed by Gatheral [1], and finally has an inherent
extrapolation method.

In time direction one might connect different slice kernels by linear interpo-
lation of the variances for same deltas. This also normally ensures the absence
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of calendar arbitrage, for which a necessary condition is a non-decreasing vari-
ance for constant moneyness F/K (see also Gatheral [1] for a discussion of this).

Figure 1 below displays the shape of a slice kernel applied to a typical FX vol
surface constructed from 10 and 25 delta volatilities, and the ATM volatility.
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Figure 1: Kernel Interpolation of FX Vol Surface
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