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1 Introduction

The results reported in this paper were motivated by the problem of pricing and
hedging a particular exotic option, a call which knocks out in the money. More
specifically, we assume a geometric Brownian motion model

dS(t) = (rd − rf )S(t) dt + σS(t) dW (t), S(0) > 0, (1)

for the exchange rate. The domestic interest rate rd ∈ R, the foreign interest
rate rf ∈ R, the volatility σ > 0 and the planning horizon T > 0 are assumed
to be constant. The process (W (t); 0 ≤ t ≤ T ) is a Brownian motion under a
probability measure P which is risk-neutral, i.e., is chosen so that the foreign
currency has mean rate of return r , rd − rf . In an equity model, where S
denotes the stock price, we can think of rf as a continuously paid dividend rate.

Consider an up-and-out call whose payoff is (S(T )−K)+I{max0≤t≤T S(t)<B}
at expiration date T , where the strike price K and the knock-out barrier B
satisfy 0 < K < B and IA denotes the indicator of the generic event A. This
call “knocks out” in the money, which makes the implementation of the Black–
Scholes hedging strategy difficult because it has large negative delta and gamma
values near the barrier near expiration. A trader who is delta-hedging a short
position in this option would take large short positions in the foreign currency
and make large adjustments to this position.

A common pricing practice for such options is to move the barrier. If one
prices and hedges the option as if the barrier were some number B′ > B, then
the dangerous region of large negative delta and gamma can be moved above B,
and the option will knock out before the exchange rate reaches this region. Of
course, the computed price of the option increases with increasing B′, and there
is no clear procedure for choosing an appropriate value for B′.

The risk of loss and the hedging problem of barrier options have been recog-
nized by trading practitioners as well as academics. There are various ways to
limit this risk and this hedging difficulty as for example

(i) Include rebates, see Section 4.2.2.

(ii) Modify the knock-out regulation as follows. The final payoff loses its value
at a rate proportional to the total time the exchange rate spends above the
barrier. Such barrier options are called soft barrier options or step options
and are discussed, e.g., in [16] or [21].

(iii) Modify the knock-out regulation as follows. The final payoff loses its value
only if the exchange rate spends a pre-specified time interval above the bar-
rier without interruption. Such options are called Parisian barrier options
and are discussed in [7] and [8] and [15].

All of these approaches have one common goal. The value of the option at
the barrier is lifted to some positive number to ensure the holder does not face
sudden loss of the entire option contract. The seller then has a smaller negative
delta and gamma for the hedge. Rather than changing the contract, we address
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this problem by constraining the size of the short position allowed for hedging
a short option position and by incorporating the cost of this constraint into the
price of the option. We develop this method for general path-dependent options
and show how to extend the methodology of Broadie, Cvitanić and Soner [5] to
compute upper hedging prices. The method applies theoretically even to a book
of options, although the computational issues for a book can be substantial as
indicated in the case of a book of two barrier options in [24].

Our method is based on the idea of super-replication, developed by Cvitanić
and Karatzas [9] and El Karoui and Quenez [13]. The price of a contingent claim
obtained by this method is called the upper hedging price, and it is defined in
terms of a minimization problem. It is informative to consider the dual problem,
which is one of maximization over changes of measure, and the equivalence of
the two problems was shown in [9] and [13].

The dual problem of [9] and [13] is not easily solved in the generality of those
papers. However, Broadie, Cvitanić and Soner [5] showed that for a contingent
claim whose payoff at expiration is a function of the final value of a single, geo-
metric Brownian motion, the dual problem can be solved in two steps. One first
computes a certain transform, which we call the face-lift, of the payoff function
(see (15) and (21) below). One next prices the contingent claim whose payoff
at the final time is the face-lifted version of the original payoff. One does this
using the usual risk-neutral pricing formula, i.e., without regard to the portfolio
constraint.

Schmock, Shreve and Wystup [24] extended this idea to the case of path-
dependent options with a lower bound on the hedging portfolio. They provide a
reformulation of the dual problem of [9] and [13] so that the solution can often
be obtained by inspection.

The role of upper hedging prices in the presence of stochastic volatility and/or
transaction costs is studied in [3], [10], [11], [26]. Gamma constraints are treated
in [25]. Lower hedging prices are introduced in [17], and [18] treats perpetual
American options using similar methodology. Classical Black–Scholes prices for
a large number of exotic options are provided by Zhang [28]. Several authors,
including [1], [4], [6] and [12], have suggested static hedges for dangerous exotic
options. Since exact super-replication is in general too expensive, many authors
including Föllmer and Leukert [14] examine hedging strategies which succeed
with high probability (quantile hedging).

The paper is organized as follows. Section 2 discusses the motivating up-
and-out call in more detail. Section 3 sets out the general model and presents a
survey of super-replication with leverage constraints. Section 4 is a practitioner’s
guide to compute closed-form solutions and Section 5 illustrates how to combine
finite-difference methods and leverage constraints.

2 Reverse Up-and-Out Call

We return to the up-and-out call of the previous section. If S(t) = x > 0 at time
t ∈ [0, T ] and the call has not knocked out prior to t, then its value is given by
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the risk-neutral pricing formula

v(t, x) , Et,x
[
e−rd(T−t)(S(T )−K)+I{M(t,T )<B}

]
, (2)

where Et,x denotes expectation with respect to the solution S of (1) with initial
value S(t) = x, i.e.,

S(u) = x exp
{
σ
(
W (u)−W (t)

)
+ µ(u− t)

}
, u ∈ [t, T ], (3)

with µ , r − 1
2σ2, and

M(t, T ) , max
u∈[t,T ]

S(u), t ∈ [0, T ], (4)

denotes the maximum of S during the time interval [t, T ] of length τ , T − t.
The joint distribution of the Brownian increment Y = W (T )−W (t) + θ(T − t)
with drift θ ∈ R and its maximum Z = maxs∈[t,T ](W (s)−W (t) + θ(s− t)) over
the interval [t, T ] can be derived using Girsanov’s theorem (see [2, Formula 1.1.8]
or [19, Section 3.5]). A density of the joint distribution P(Y, Z)−1 with respect
to the two-dimensional Lebesgue measure is given by

fθ,τ (y, z) = exp
{
− (2z − y)2

2τ
+ θy − 1

2
θ2τ

}
if z > 0 and y < z, (5)

and fθ,τ (y, z) = 0 otherwise.
Let N denote the standard normal distribution function. Using formula (5),

v(t, x) can be computed explicitly (see Figure 1). For t ∈ [0, T ) and x ∈ (0, B],

v(t, x) = xe−rf τ
[
N (b− θ+)−N (k − θ+)

]
+ xe−rf τ+2bθ+

[
N (b + θ+)−N (2b− k + θ+)

]
−Ke−rdτ

[
N (b− θ−)−N (k − θ−)

]
−Ke−rdτ+2bθ−

[
N (b + θ−)−N (2b− k + θ−)

]
,

(6)

where

b ,
1

σ
√

τ
log

B

x
, k ,

1
σ
√

τ
log

K

x
, and θ± ,

( r

σ
± σ

2

)√
τ . (7)

Definition (2) implies that v(t, B) = 0 for t ∈ [0, T ]. For x ∈ (0, B], as t ↑ T ,
we obtain from (6) that v(t, x) approaches the discontinuous limit v(T, x) =
(x−K)+I{x<B}. Consequently, for x near B and t near T , the “delta” vx(t, x)
and “gamma” vxx(t, x) of this option become large in absolute value as illustrated
in Figure 1.

3 Model Formulation and Survey of Super-rep-
lication under Leverage Constraints

Throughout this paper, we work within the context of the canonical probability
space for Brownian motion. In particular, we take Ω to be the set of continuous
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functions from [0, T ] to R taking the value zero at zero, we take P to be Wiener
measure, and we take W (t, ω) = ω(t) for all t ∈ [0, T ] and all ω ∈ Ω. For
0 ≤ t ≤ T , we denote by FW(t) the σ-algebra generated by (W (s); 0 ≤ s ≤ t).
The σ-algebra F(T ) is the P-completion of FW(T ), and for 0 ≤ t ≤ T , F(t) is
the augmentation of FW(t) by the P-null sets of F(T ).

We introduce a contingent claim whose payoff at expiration date T is g(S(·)).
Let C+[0, T ] denote the space of nonnegative continuous functions on [0, T ]. We
assume that the nonnegative function g : C+[0, T ] → [0,∞) is lower semicon-
tinuous in the supremum norm topology. The argument of g is the path of the
exchange rate process S from date 0 to date T , and because this path is random,
g(S(·)) is a random variable on (Ω,F(T ), P).

The problem of super-replication of a short position in this option can be
posed as follows. Let X(0) > 0 be a given nonrandom initial wealth, and choose
an (F(t); 0 ≤ t ≤ T )-adapted portfolio process (π(t); 0 ≤ t ≤ T ) and cumulative
consumption process (C(t); 0 ≤ t ≤ T ). We interpret π(t) as the proportion of
wealth invested in the foreign currency at time t earning the continuous interest
rate rf . It is sometimes called the gearing or leverage. The remaining wealth is
invested at domestic interest rate rd, and C(t) is the amount of wealth consumed
up to time t. Hence, C(t) is nondecreasing, right-continuous with left limits, and
C(0) = 0. This leads us to model the differential of wealth as

dX(t) = π(t)X(t)
dS(t)
S(t)

+ rf π(t)X(t) dt + rd(1− π(t))X(t) dt− dC(t)

= rdX(t) dt + σπ(t)X(t) dW (t)− dC(t).
(8)

If X(T ) ≥ g(S(·)) almost surely (a.s.), we say that (π,C) super-replicates g(S(·))
beginning with initial wealth X(0). As in [20, Definition 2.2, p. 263], we do
not impose any integrability condition on π, instead setting X ≡ 0 after any
explosion of

∫ t

0
π2(s) ds.

Next, given some fixed number α ∈ [0,∞), we impose the portfolio constraint

π(t) ≥ −α, 0 ≤ t ≤ T , a.s. (9)

The point of this constraint, in the context of the up-and-out call of the previous
section, is to avoid short positions which are too large relative to the value of the
contingent claim being hedged. The parameter α must be chosen by the person
pricing the contingent claim; if α = 0, then short positions in the underlying are
prohibited.

The upper hedging price of the contingent claim g(S(·)) is defined to be

v(0, S(0);α) , inf
{

X(0)
∣∣∣∣There exist π satisfying (9)
and C such that X(T ) ≥ g(S(·)) a.s.

}
. (10)

Cvitanić and Karatzas [9] have shown that when v(0, S(0);α) is finite, there
exists an X(0), denoted X̂(0), and corresponding portfolio and consumption
processes π̂ and Ĉ attaining the infimum in (10). In the case of the up-and-
out call option of the previous section, for each time t ∈ [0, T ] and exchange
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rate S(t) ∈ (0, B), there is an upper hedging price v(t, S(t);α) computed under
the assumption that the option has not been knocked out. For this option, the
corresponding hedge portfolio process π given by Cvitanić and Karatzas [9] is

π(t) =
S(t)vx(t, S(t);α)

v(t, S(t);α)
, t ∈ [0, T ], (11)

(with π(T ) unspecified if S(T ) = K) and the portfolio constraint (9) implies

αv(t, x;α) + xvx(t, x;α) ≥ 0 (12)

for all (t, x) ∈ [0, T ]× (0, B) \ {(T,K)}.
We denote the corresponding wealth process by X̂ and define the upper hedg-

ing price at time t ∈ [0, T ) of the contingent claim g(S(·)) to be X̂(t). Since the
upper hedging price X̂(t) includes a “reserve” to offset the portfolio constraint
(9), it generally exceeds the risk-neutral price E[e−rd(T−t)g(S(·)) |F(t)]. During
the evolution of the process, some part of this reserve might be revealed to be
unnecessary. The process Ĉ is included in the formulation of the upper hedg-
ing price so that an unnecessary reserve can be removed and is thus no longer
included in the upper hedging price.

Cvitanić and Karatzas [9] and El Karoui and Quenez [13] have shown that
the problem of computing the upper hedging price, which is a minimization
problem, can be transformed to a dual maximization problem. Their results
apply to path-dependent contingent claims written on multiple currencies whose
models may have random, time-varying volatilities, and they require only that
π be constrained to lie in a closed, convex set. The dual problem is one of
maximization over changes of probability measure, and in its full generality is
not easy to solve. In our model, the dual problem takes the form of (13) below.

Theorem 1 (Cvitanić and Karatzas, El Karoui and Quenez) The up-
per hedging price of (10) satisfies

v(0, S(0);α) = sup
λ

Eλ

[
e−rdT−αλ(T )g(S(·))

]
, (13)

where the supremum is over all adapted, nondecreasing, processes which are Lip-
schitz continuous in t, uniformly in ω, and satisfy λ(0) = 0. Here Eλ denotes
expectation under the probability measures Pλ whose Radon–Nikodým derivative
with respect to P is

dPλ

dP
= exp

{
− 1

σ

∫ T

0

λ′(t) dW (t)− 1
2σ2

∫ T

0

(λ′(t))2dt

}
. (14)

The supremum in (13) over Lipschitz continuous processes is often not at-
tained, and Lipschitz continuity is not easily relaxed in Theorem 1 because of
the need to define Pλ by (14).

Broadie, Cvitanić and Soner [5] specialized Theorem 1 to the case of a contin-
gent claim whose payoff at expiration is a function of the final value of a single,
geometric Brownian motion. A presentation of the results of both [9] and [5] in
full generality may be found in [20].
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Theorem 2 (Broadie, Cvitanić and Soner) Let ϕ : [0,∞) → [0,∞) be
lower semicontinuous, and suppose the contingent claim g(S(·)) is given by
g(S(·)) = ϕ(S(T )). Define the “face-lifted” payoff function

ϕ̂α(x) , sup
λ≥0

e−αλϕ(xe−λ), x ≥ 0. (15)

Then the upper hedging price under hedge-portfolio constraint (9) is given by

v(0, S(0);α) = E
[
e−rdT ϕ̂α(S(T ))

]
. (16)

The idea behind Theorem 2 is that the upper hedging price corresponds to
the smallest function [0, T ]× (0,∞) 3 (t, x) 7→ v(t, x;α) which

(i) satisfies the Black–Scholes partial differential equation

vt(t, x;α) + rxvx(t, x;α) +
1
2
σ2x2vxx(t, x;α)− rdv(t, x;α) = 0 (17)

on [0, T )× (0,∞),

(ii) dominates the final payoff, i.e., satisfies v(T, x;α) ≥ ϕ(x) for x > 0, and

(iii) satisfies the portfolio constraint (12) on [0, T )× (0,∞).

Since there is no guarantee that ϕ satisfies the constraint (12), we do not expect
v(T, ·;α) to agree with ϕ. The function ϕ̂α is the smallest function dominating
ϕ and satisfying (12), namely

αϕ̂α(x) + x
d

dx
ϕ̂α(x) ≥ 0 for all x > 0, (18)

cf. Subsection 4.2.1, hence v(T, ·;α) must be at least as large as ϕ̂α. If we
set v(T, ·;α) , ϕ̂α and solve the Black–Scholes partial differential equation
(17) on [0, T ) × (0,∞), then v satisfies (i) and (ii). The pleasant surprise is
that v also satisfies (iii). This is because (i) and a bit of calculus shows that
(t, x) 7→ αv(t, x;α) + xvx(t, x;α) satisfies the Black–Scholes equation (17) on
[0, T )× (0,∞), and since αv(T, x;α) + xvx(T, x;α) ≥ 0 for all x > 0 by (18), we
have also (12) on [0, T ) × (0,∞) by the maximum principle, see Appendix A.
Put another way, we may regard αv(t, S(t);α)+S(t)vx(t, S(t);α) as the price of
a derivative security at time t ∈ [0, T ) with underlying S and nonnegative final
payoff given by the left-hand side of (18). This price must be nonnegative at all
times prior to expiration.

Schmock, Shreve and Wystup [24] formulated the dual problem (13) in such
a way that no change of measure is required, and they could then extend the
class of processes over which the supremum in the dual problem is computed.
Their goal was to extend Theorem 2 to path-dependent options. Their main
result is that in place of the “face-lifting” procedure (15), one must solve a
singular stochastic control problem. This problem can sometimes be solved by
inspection, and in particular, such a solution is possible for the up-and-out call
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option of the previous section. The solution of the stochastic control problem
leads directly to a formula for the upper hedging price, in the spirit of (16).

The work by Schmock, Shreve and Wystup [24] is more general than [5]
in that it allows path-dependent options, but more special in that the only
portfolio constraint considered there is (9), whereas [5] permits a general convex
constraint on π. Schmock, Shreve and Wystup [24] converted the computation
of the supremum on the right-hand side of (13) to a singular stochastic control
problem.

These authors also offered two interpretations for the parameter α. One of
these was that 1/α could be understood as the proportional transaction cost
which the trader of the short option position incurs to close out his position in
the foreign currency upon knock-out of the option. Taking this transaction cost
into account when pricing the option, one attains the upper hedging price [24,
Remark 5.4]. The other is related to moving the barrier. If one prices an option
by the usual Black–Scholes method leading to (6), but with a knock-out barrier
at (1 + 1/α)B rather than at B, then one obtains a price close to the upper
hedging price with portfolio constraint (9) for the option with barrier at B, see
[24, Remark 5.3].

Theorem 2 is a special case of a more general result of Broadie, Cvitanić and
Soner [5]. Another special case is obtained by an upper portfolio constraint

π(t) ≤ α, 0 ≤ t ≤ T , a.s. (19)

with a nonnegative number α. In this case, the analogue of (12) is

αv(t, x;α)− xvx(t, x;α) ≥ 0 (20)

on [0, T )× (0,∞) and (15) is replaced by

ϕ̂α(x) , sup
λ≥0

e−αλϕ
(
xeλ

)
, x ≥ 0. (21)

4 Analytical Solutions

In this section we provide analytical formulae for the upper hedging prices of
digital options, reverse barrier options and one-touch digital options. To model
leverage constraints we will always take (9) for shortselling constraints and (19)
for borrowing constraints with α ≥ 0. The first example of digital options is
a straightforward application of face-lifting Theorem 2. As noted by Broadie,
Cvitanić and Soner [5], who work out the example of a lookback option, this type
of face-lifting can be extended to path-dependent options. These extensions are
the subject of this paper. In particular, reverse barrier options and one-touch
digital options are presented in Subsections 4.2 and 4.3, respectively.

4.1 Digital Options

Digital options, also called binary options, have the path-independent payoff

g(S) = ϕ(ST ) = I{φST >φK}, (22)
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where K denotes the strike and φ is a binary variable taking the value φ = +1
for a digital call and φ = −1 for a digital put. We choose α ≥ 0 and impose the
natural constraint α − φπ(t) ≥ 0 for all t ∈ [0, T ], which leads to (cf. (12) and
(20))

αv(t, x;α)− φxvx(t, x;α) ≥ 0 on [0, T )× (0,∞). (23)

We then compute the constrained value function v by the face-lifting method of
Theorem 2. Using (15) or (21), respectively, we obtain

ϕ̂α(x) = I{φx>φK} +
( x

K

)φα

I{φx≤φK}, x ≥ 0. (24)

Evaluating the right-hand side of (16) using (3) and (24), we get

v(t, x;α) = Et,x
[
e−rdτ ϕ̂α(S(T ))

]
= e−rdτ

[∫
{φxeσ

√
τy+σ

√
τθ−>φK}

N ′(y) dy

+
∫
{φxeσ

√
τy+σ

√
τθ−≤φK}

(
xeσ

√
τy+σ

√
τθ−

K

)φα

N ′(y) dy

]
= e−rdτN (φd−) + h(t, x;α)

(25)

for all t ∈ [0, T ) and x > 0, using the notation τ , T − t,

h(t, x;α) , e−rdτ
( x

K

)φα

eφαθ−σ
√

τ+ 1
2 α2σ2τN (−φd− − ασ

√
τ),

d− , θ− − k and k, θ− as in (7). The danger-supplement at time t ∈ [0, T ) is
given by h(t, S(t);α).

4.2 Reverse Barriers

4.2.1 The Up-and-Out Call

We will now price an up-and-out call option subject to the shortselling constraint
(9), which implied (12) on [0, T ] × (0, B) \ {(T,K)}. Before we proceed, let
us understand the relation between the shortselling constraint and the face-
lifting equation (15) on an intuitive level. Given a path-independent payoff
g(S) = ϕ(ST ) ≥ 0 with a differentiable ϕ, we want to compute the face-lifted
ϕ̂α as defined in (15). To do that, we need to maximize the real-valued function
[0,∞) 3 λ 7→ f(λ, x) , e−αλϕ(xe−λ) for every x > 0. Assume that there exists
a differentiable function x 7→ λ(x) > 0 such that λ(x) maximizes f(·, x) for every
x > 0, meaning that ϕ̂α(x) = f(λ(x), x). By the first order condition,

0 = fλ(λ(x), x) = −αf(λ(x), x)− xfx(λ(x), x), x > 0.

Since ϕ̂′α(x) = fλ(λ(x), x)λ′(x) + fx(λ(x), x), we obtain

αϕ̂α(x) + xϕ̂′α(x) = 0, x > 0, (26)
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which is (18) with equality. Hence, we see that the shortselling constraint (12)
is imposed with equality at the final boundary of the region where v must sat-
isfy the Black–Scholes partial differential equation (17). One can check that
if (t, x) 7→ v(t, x;α) satisfies the Black–Scholes equation, then the function
(t, x) 7→ αv(t, x;α)+xvx(t, x;α) also satisfies the Black–Scholes equation (assum-
ing enough differentiability). It is now a consequence of the maximum principle
(see Appendix A) that the shortselling constraint (12) holds inside this region
as well, but not necessarily with equality. The reason why the shortselling con-
straint is imposed with equality at the final time is to get the minimality of the
value function.

This intuition leads to the following idea to determine the constrained value
function v of the up-and-out call option. We impose the shortselling constraint
with equality on the boundary of the region where the option is defined and where
the unconstrained value function violates the shortselling constraint. Tedious
calculation using (6) shows that this is the case for (t, x) ∈ [0, T )×{B}. Hence we
want to solve the Black–Scholes partial differential equation (17) on [0, T )×(0, B)
subject to the boundary conditions

αv(t, B;α) + Bvx(t, B;α) = 0 ∀ t ∈ [0, T ), (27)
v(t, 0;α) = 0 ∀ t ∈ [0, T ], (28)

v(T, x;α) = (x−K)+I{x<B} ∀x ∈ [0, B], (29)

and then extend v to a function on [0, T ] × [0,∞) by setting v(t, x;α) , 0 for
all t ∈ [0, T ] and x > B. In (27) we mean the one-sided derivative

vx(t, B;α) , lim
h↓0

v(t, B;α)− v(t, B − h;α)
h

.

Note that (27) makes the difference to the unconstrained case. We claim that
the solution v is the upper hedging price of the constrained up-and-out call at
time t if S(t) = x. To see this we define M(t, T ) by (4) and the value of an
auxiliary contingent claim by

w(t, x;α) , Et,x
[
e−rd(T−t)

[
(1 + α)S(T )− αK

]
I{S(T )≥K}I{M(t,T )<B}

]
(30)

for (t, x) ∈ [0, T ]×(0,∞). The method for finding the auxiliary value function w
is to consider the function (t, x) 7→ αv(t, x;α) + xvx(t, x;α). We would like to
define this to be the auxiliary value function w. The problem is that v is yet to
be computed, whence we cannot use it to define w. Instead, we use the desired
identity

w(t, x;α) = αv(t, x;α) + xvx(t, x;α) (31)

only to compute terminal and boundary conditions for w and try to identify the
auxiliary contingent claim w. Then we solve for each t the ordinary differential
equation (31) to obtain a candidate for v in terms of w. Finally we have to verify
that the value function v solves (17) on [0, T ) × (0, B) and has the properties
(27)–(29).
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We will now see in an example how this procedure works in detail. Define
the first hitting time τ̃ , T ∧ inf{t ≥ 0 : S(t) = B}. We list some properties of
w which follow immediately from its definition (30).

(i)
{
e−rd(t∧τ̃)w(t ∧ τ̃ , S(t ∧ τ̃);α)

}
t≥0

is a martingale, and therefore

(ii) w satisfies the Black–Scholes differential equation (17) on [0, T )× (0, B).

(iii) 0 ≤ w(t, x;α) ≤ e−rf (T−t)(1 + α)x for all t ∈ [0, T ] and x > 0 and thus we
obtain a continuous extension of w by w(t, 0;α) , 0 for t ∈ [0, T ].

(iv) w(T, x;α) = [(1 + α)x− αK]I{x≥K}I{x<B} for all x ≥ 0.

(v) w is nonnegative on [0, T ] × [0, B] and also continuous there with the
exception of the two points (T,B) and (T,K).

(vi) w(t, x;α) = 0 for all t ∈ [0, T ] and x ≥ B.

Now we can define, for all (t, x) ∈ [0, T ]× [0, B],

v(t, x;α) ,
∫ 1

0

yα−1w(t, xy;α) dy

= x−α

∫ x

0

zα−1w(t, z;α) dz (if x > 0)
(32)

and list properties of v which follow from the definition (32):

(i) v satisfies the Black–Scholes differential equation (17) on [0, T )× (0, B).

(ii) 0 ≤ v(t, x;α) ≤ e−rf (T−t)x for all t ∈ [0, T ] and x ≥ 0, in particular
v(t, 0;α) = 0 for t ∈ [0, T ].

(iii) αv(t, x;α) + xvx(t, x;α) = w(t, x;α) for all t ∈ [0, T ) and x ∈ (0, B) and
therefore by left-continuity

(iv) αv(t, B;α) + Bvx(t, B;α) = 0 for all t ∈ [0, T ).

(v) v(T, x;α) = (x−K)+ for all x ∈ [0, B].

(vi) v is continuous on [0, T ]× [0, B].

(vii) limx↓0 xvx(t, x) = 0 for all t ∈ [0, T ].

(viii) v(t, x;α) > v(t, x;∞) (follows from the maximum principle).

(ix) limα→∞ v(t, x;α) = v(t, x), defined by (2), as we would expect.

In particular we learn that this v solves the Black–Scholes partial differential
equation (17) subject to the boundary conditions (27) and (28) and the terminal
condition (29), and in addition π(t, x) = xvx(t, x;α)/v(t, x;α) super-replicates
the payoff of an up-and-out call option and satisfies the shortselling constraint
(9) during its lifetime.
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We will now demonstrate that the function v derived above is the smallest
function which super-replicates the payoff of an up-and-out call and satisfies the
Black–Scholes partial differential equation and the shortselling constraint, which
will complete the argument that v(t, x;α) is the upper hedging price. To do this,
we show that any other function ṽ, which satisfies

• the Black–Scholes partial differential equation (17) on [0, T )× (0, B),

• ṽ(T, x;α) = v(T, x;α) for x ∈ [0, B],

• and the constraint αṽ(t, x;α)+xṽx(t, x;α) ≥ 0 for t ∈ [0, T ) and x ∈ [0, B],
where we take one-sided derivatives at the endpoints 0 and B,

cannot be less than v(t, x;α). Since ṽ also satisfies the shortselling constraint at
the barrier, but perhaps not with equality, let

g(t) , αṽ(t, B;α) + Bṽx(t, B;α), t ∈ [0, T ), (33)

for some nonnegative function g. Then ṽ can be characterized in the same way
as v, namely by defining

ṽ(t, x;α) ,
∫ 1

0

yα−1w̃(t, xy;α) dy (34)

where

(i) w̃ satisfies the Black–Scholes equation (17) on [0, T )× (0, B),

(ii) w̃(T, x;α) = w(T, x;α) for x ∈ [0, B],

(iii) w̃(t, 0;α) = w(t, 0;α) = 0 for t ∈ [0, T ],

(iv) w̃(t, B;α) = g(t) ≥ 0 = w(t, B;α) for t ∈ [0, T ).

As before we conclude that

(i) ṽ satisfies the Black–Scholes equation (17) on [0, T )× (0, B),

(ii) ṽ(T, x;α) = v(T, x;α) for x ∈ [0, B],

(iii) ṽ(t, 0;α) = v(t, 0;α) = 0 for t ∈ [0, T ],

(iv) αṽ(t, x;α)+xṽx(t, x;α) = w̃(t, x;α) for t ∈ [0, T ) and x ∈ [0, B] and hence

(v) αṽ(t, B;α) + Bṽx(t, B;α) = w̃(t, B;α) = g(t) for t ∈ [0, T ).

Since w̃ ≥ w by the maximum principle (see Appendix A), we can deduce

ṽ(t, x, α) =
∫ 1

0

yα−1w̃(t, xy;α)dy ≥
∫ 1

0

yα−1w(t, xy;α)dy = v(t, x;α). (35)

Notice that w̃ can be viewed as an auxiliary up-and-out option with rebate g(t),
whereas w does not have a rebate. The option with the rebate must be worth at
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least as much as the option without the rebate. This is the maximum principle
in terms of finance.

We conclude that v(t, x;α) is the upper hedging price at time t ∈ [0, T ] if
x = S(t) < B. For x = S(t) ≥ B the upper hedging price is clearly zero, because
the option is knocked out.

In the following, we will use definition (32) to compute v explicitly. To do
this, we need w first. By definition, we know that w(·, x;α) = 0 for x ≥ B. To
find w(t, x;α) for (t, x) ∈ [0, T )× (0, B), we use the joint density fθ−,τ from (5)
for the random pair of a final time value and the running maximum of a Brownian
motion with drift θ− and compute the expected value (30) as an integral

w(t, x;α) = e−rdτ

∫ b

k

∫ b

0∨y

[(1 + α)xeσy − αK]fθ−,τ (y, z) dz dy

= (1 + α)xe−rf τ [N (b− θ+)−N (k − θ+)]

+ (1 + α)xe−rf τ+2bθ+ [N (b + θ+)−N (2b− k + θ+)]

− αKe−rdτ [N (b− θ−)−N (k − θ−)]

− αKe−rdτ+2bθ− [N (b + θ−)−N (2b− k + θ−)] ,

(36)

where τ , T − t and b, k, θ± are given by (7). Finally, it turns out that the
integration of definition (32) needed to find the constrained value function v can
be performed as well, and the result is given in equation (52). See Figure 1 for
a graph of v.

4.2.2 Rebates

Rebates are discussed in most of the finance literature on barrier options. For a
knock-in option a rebate agreement means that a sum R is paid at expiration by
the seller of the option to the holder of the option if the option failed to knock
in during its lifetime. For a knock-out option a rebate agreement means that a
sum R is paid by the seller of the option to the holder of the option, if the option
knocks out. There are two kinds of agreements in the knock-out case: (a) The
rebate can be paid at expiration T , in which case the boundary condition of the
Black–Scholes differential equation is v(t, B) = Re−rd(T−t), or (b) the rebate
can be paid at the first time τ the barrier is hit, in which case the corresponding
boundary condition becomes v(t, B) = R. Both types can be viewed as an
approximation to the function v(t, B;α). However, traded barrier options are
normally sold without any rebate agreements, mainly because options without
rebate are cheaper than options with rebate, and secondly because a rebate
is actually just a path-dependent digital option which can be separated easily
from the barrier option and will be sold separately, if the need really occurs. In
any case, including such rebate features often makes delta hedging easier, which
could be one of the reasons they were invented. The particular choice of the
rebate v(t, B;α) is actually in favor of both the seller as well as the holder of
the option. It is favorable for the seller, because it is exactly the kind of rebate
one should specify in order to obey the portfolio constraint. It is favorable for
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the holder, because first of all she has an insurance against loss of her entire
position, and secondly this insurance is cheap for times long before expiration.
Of course, if an option knocks out in the money at a time near expiration the
loss for the holder is substantially larger than at earlier times, and that is why
a rebate v(t, B;α) is a suitable way to cover the holder’s risk exposure.

4.2.3 Joint Formulae for all Reverse Barriers

There are four types of reverse barrier options:

(i) (φ = 1, η = 1): the down-and-out call,

(ii) (φ = 1, η = −1): the up-and-out call,

(iii) (φ = −1, η = 1): the down-and-out put,

(iv) (φ = −1, η = −1): the up-and-out put.

Since their analysis is similar to the up-and-out call, we just list the results
covering all four types. The suitable constraints are π ≥ −α for η = −1 and
π ≤ α for η = 1. The auxiliary value function w(t, x;α) satisfies the Black–
Scholes partial differential equation, the boundary condition w(t, B;α) = 0 and
the terminal condition

(i) down-and-out call:

w(T, x;α) = [(α− 1)x− αK]I{x≥( α
α−1 K)∨B} (37)

(ii) up-and-out call:

w(T, x;α) = [(α + 1)x− αK]I{K≤x<B} (38)

(iii) down-and-out put:

w(T, x;α) = [αK − (α− 1)x]I{B<x≤K} (39)

(iv) up-and-out put:

w(T, x;α) = [αK − (α + 1)x]I{x≤( α
α+1 K)∧B}. (40)

The solution is

w(t, x;α) = (α− η)xe−rf τ
[φ− η

2
N (φ(b− θ+)) + ηN (−η(k − θ+))

]
+ (α− η)xe−rf τe2bθ+

[φ− η

2
N (φ(b + θ+))− φN (φ(l + θ+))

]
− αKe−rdτ

[φ− η

2
N (φ(b− θ−)) + ηN (−η(k − θ−))

]
− αKe−rdτe2bθ−

[φ− η

2
N (φ(b + θ−))− φN (φ(l + θ−))

]
,

(41)
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where τ , T − t, b and θ± are given by (7), and

k ,

{
1

σ
√

τ
ln K

x if φη = −1,
1

σ
√

τ
ln

(
η
x max[ηB, ηα

α−η K]
)

if φη = +1,
(42)

l , 2b− k. (43)

The constrained value function v(t, x;α) is defined by

v(t, x;α) ,
∫ 1

0

yα−1w(t, xy−η;α) dy, (44)

satisfies the relation

w(t, x;α) = αv(t, x;α)− ηxvx(t, x;α) (45)

and the terminal condition

(i) down-and-out call:

K ′ ,
α

α− 1
K (46)

v(T, x;α) =


x−K if x ≥ K ′ ∨B,
(K ′ −K)

(
x

K′

)α if B ≤ x ≤ K ′,
0 if x < B

(47)

(ii) up-and-out call:

v(T, x;α) = [x−K]+I{x≤B} (48)

(iii) down-and-out put:

v(T, x;α) = [K − x]+I{x≥B} (49)

(iv) up-and-out put:

K ′ ,
α

α + 1
K (50)

v(T, x;α) =


K − x if x ≤ K ′ ∧B,
(K −K ′)

(
K′

x

)α if K ′ ≤ x ≤ B,
0 if x > B,

(51)
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and can be summarized with the notation s , (1 − ηα)σ
√

τ and s̃ , −ηασ
√

τ
as

v(t, x;α) = xe−rf τ

[
φ− η

2
N (−η(b− θ+)) + ηN (−η(k − θ+)) + e

1
2 sτ(s−2θ+)

×
{

φ− η

2
esbN (−η(−b + θ+ − s)) + ηeskN (−η(−k + θ+ − s))

}]
+ xe−rf τ+2bθ+

s

s− 2θ+

[
φ− η

2
N (−η(b + θ+))− φN (φ(l + θ+)) + e

1
2 sτ(s−2θ+)

×
{

φ− η

2
e(s−2θ+)bN (−η(−b + θ+ − s)) + ηe(s−2θ+)lN (−η(−l + θ+ − s))

}]
−Ke−rdτ

[
φ− η

2
N (−η(b− θ−)) + ηN (−η(k − θ−)) + e

1
2 s̃τ(s̃−2θ−)

×
{

φ− η

2
es̃bN (−η(−b + θ− − s̃)) + ηes̃kN (−η(−k + θ− − s̃))

}]
−Ke−rdτe2bθ−

s̃

s̃− 2θ−

[
φ− η

2
N (−η(b + θ−))− φN (φ(l + θ−)) + e

1
2 s̃τ(s̃−2θ−)

×
{

φ− η

2
e(s̃−2θ−)bN (−η(−b + θ− − s̃)) + ηe(s̃−2θ−)lN (−η(−l + θ− − s̃))

}]
.

(52)

Notice that in the second and in the fourth summand the denominator s− 2θ+

or s̃− 2θ− could be zero for α = 2r/σ2 or α = 2r/σ2− 1, respectively. However,
these are both removable discontinuities, and in fact one can apply l’Hôpital’s
rule to find the correct equation for these two points. We do not state the explicit
result here, because it is not more illuminating than the above formula. Since a
minor change in α can avoid hitting the two removable discontinuities, this does
not cause any problems in practice.

4.2.4 Comparative Statics

For practical use it seems handy to list some derivatives of the constrained value
function v(t, x;α), commonly known as the “Greeks”. We use the already known
auxiliary claim w and obtain

vx = −η

x
(w − αv), (53)

vxx = − η

x2
[xwx + (αη − 1)w + α(1− αη)v], (54)

vt = −η
σ2

2
xwx + βw + (rd − αβ)v, (55)

where we denote

β , −η
[σ2

2
(1− ηα)− r

]
. (56)
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The sensitivity theta is most easily obtained via the Black–Scholes partial
differential equation. The leverage is given by η(α−w/v). See Figure 1 for delta
and gamma of the constrained value function of an up-and-out call option. The
sensitivity delta of the auxiliary value function w can be derived as

wx(t, x;α) = (α− η)e−rf τ
[φ− η

2
N (φ(b− θ+)) + ηN (−η(k − θ+))

]
+

α− η

σ
√

τ
e−rf τ

[
−φ

φ− η

2
N ′(b− θ+) +N ′(k − θ+)

]
+ (α− η)e2bθ+e−rf τ

(
1− 2θ+

σ
√

τ

)
×

[φ− η

2
N (φ(b + θ+))− φN (φ(l + θ+))

]
+

(α− η)e2bθ+e−rf τ

σ
√

τ

[
−φ

φ− η

2
N ′(b + θ+) +N ′(l + θ+)

]
− αKe−rdτ

xσ
√

τ

[
−φ

φ− η

2
N ′(b− θ−) +N ′(k − θ−)

]
− −2αθ−Ke−rdτ+2bθ−

xσ

[φ− η

2
N (φ(b + θ−))− φN (φ(l + θ−))

]
− αKe−rdτ+2bθ−

xσ
√

τ

[
−φ

φ− η

2
N ′(b + θ−) +N ′(l + θ−)

]
,

(57)

with b and θ± given by (7), k given by (42), and l given by (43).
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Figure 1: Value (top), delta (middle) and gamma (bottom) of an unconstrained (right)
and constrained (right) up-and-out call option given by Equations (6), (52), (53), (54)
with strike K = 0.95, knock-out barrier B = 1.05 and maturity T = 90/365. We used
the interest rates rd = 5%, rf = 0%, volatility σ = 10% and α = 50.
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4.3 One-Touch Digitals

Given a hit-level or barrier B, there are two kinds of one-touch digital options,
also called American digitals or hit options. In the first (second) kind the holder
of the option receives an amount R, if the underlying hits the barrier B during
the life time of the option from below (above). We define the binary variables η
and ω to be

(i) η = −1, if B is to be hit from below,

(ii) η = +1, if B is to be hit from above,

(iii) ω = 1, if R is to be paid at expiration time T ,

(iv) ω = 0, if R is to be paid the first time the underlying hits B.

In the case η = −1 we would want to impose the upper portfolio constraint
(19), and in the case η = +1 we impose the shortselling constraint (9) for
some real number α ≥ 0 and then find the upper hedging price. As before let
us denote by v(t, x) the unconstrained value of the option at time t when the
exchange rate is x and by v(t, x;α) the corresponding constrained value function.
Since raising the option value at the boundary, where v(t, B) = R exp(−ω(T −
t)), would make the hedging problem worse, our only chance is to keep the
boundary condition v(t, B;α) = R exp(−ω(T − t)) as it is and increase the
terminal condition v(T, x) = 0 in a minimal way such that −ηπ ≤ α holds. The
portfolio-constrained problem has already been solved for the path-independent
digital option (Theorem 2). In that case, we must choose

v(T, x;α) = R

(
B

x

)ηα

, ηx ≥ ηB. (58)

To solve for v(t, x;α) in the path-dependent case, we observe that it can be
decomposed into the sum of the original hit option v(t, x) plus a supplemental
power barrier option h(t, x;α) defined by

(i) the boundary condition h(t, B;α) = 0,

(ii) the terminal condition h(T, x;α) = R(B/x)ηα, ηx ≥ ηB,

(iii) −rdh + ht + rxhx + 1
2σ2x2hxx = 0.

We present the detailed solution for the case η = −1 following the standard
procedure to compute barrier option values. To compute the value at time
t ∈ [0, T ) of the payoff random variable

R

(
ST

B

)α

I{supt≤u≤T Su<B}, (59)
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we use the joint probability density function fθ−,τ with τ , T − t as in equa-
tion (5) and obtain

h(t, x;α) = Et,x

[
e−rdτR

(
ST

B

)α

I{supt≤u≤T Su<B}

]
=

Re−rdτ

Bα

∫ b

−∞

∫ b

0∨y

(xeσy)αfθ−,τ (y, z) dz dy

= Re(−rd+ 1
2 α2σ2)τ+ασ

√
τθ−

{
e−αbσ

√
τN

(
b− ασ

√
τ − θ−

)
− eαbσ

√
τ+2bθ−N

(
−b− ασ

√
τ − θ−

)}
,

(60)

where b and θ− are given by (7). A similar computation can be done for the
case η = +1. We summarize.

Theorem 3 The supplement for one-touch digitals is given by

h(t, x;α) = Re(−rd+ 1
2 α2σ2)τ−ηασ

√
τθ−

×
{

eηασ
√

τbN (ηd−)− e−ηασ
√

τb+2bθ−N (ηd+)
}

,
(61)

where d± , ±b− (θ− − ηασ
√

τ) and b, θ− are given by (7).

Let us note that for α = 0 this formula simplifies to the rebate portion of a
knock-in barrier option as presented in the Formula Catalogue of [27].

5 Numerical Solutions

5.1 Range Binaries

For many option payoffs it is difficult or impossible to compute the constrained
value function analytically. If the boundary conditions are known, however, we
compute the value function using a finite difference grid. As an example, we
present the commonly traded range binary option whose payoff is

I{min0≤t≤T St>L; max0≤t≤T St<U} (62)

for some lower barrier L > 0 and upper barrier U > L. If we impose the
leverage constraint π(t) ∈ [−αU , αL] for a given pair of nonnegative numbers
~α = (αU , αL), then we are seeking a solution to the Black–Scholes equation
which satisfies

−αUv(t, x; ~α) ≤ xvx(t, x; ~α) ≤ αLv(t, x; ~α), 0 ≤ t ≤ T , L < x < U . (63)
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To find such a function, we solve the equations

−rdv + vt + rxvx +
1
2
σ2x2vxx = 0 ∀ t ∈ [0, T ), x ∈ (L,U), (64)

v(t, x; ~α) = 0 ∀ t ∈ [0, T ], x 6∈ [L,U ], (65)
αLv(t, L; ~α)− Lvx(t, L; ~α) = 0 ∀ t ∈ [0, T ], (66)

αUv(t, U ; ~α) + Uvx(t, U ; ~α) = 0 ∀ t ∈ [0, T ], (67)
v(T, x; ~α) = 1 ∀x ∈ (L,U). (68)

For x = U , this solution satisfies

αUv + xvx ≥ 0. (69)

by construction. At x = L, we use (66) to write

αUv + xvx = αUv + αLv ≥ 0, (70)

and again (69) holds. Finally, for t = T and L < x < U , αUv + xvx = αU ≥ 0.
Since (69) holds on the entire boundary of the region in which we have solved
the Black–Scholes equation, and αUv + xvx is itself a solution to the Black–
Scholes equation, the maximum principle implies that relation (69) holds for all
t ∈ [0, T ] and x ∈ (L,U). This is the first inequality in (63). The proof of the
second inequality in (63) is similar.

To numerically solve (64)–(68), the first step is to make this problem homo-
geneous by the change of variables y = ln x. The function u(t, y) , v(t, x; ~α) is
then uniquely determined by

−rdu + ut + µuy +
1
2
σ2uyy = 0 ∀t ∈ [0, T ), y ∈ (lnL, lnU), (71)

u(t, y) = 0 ∀t ∈ [0, T ], y 6∈ [lnL, lnU ], (72)
αLu(t, lnL)− uy(t, lnL) = 0 ∀t ∈ [0, T ], (73)
αU u(t, lnU) + uy(t, lnU) = 0 ∀t ∈ [0, T ], (74)

u(T, y) = 1 ∀y ∈ (lnL, lnU), (75)

where we abbreviate µ , r − 1
2σ2. The next step is to discretize the rectangle

[lnL, lnU ]× [0, T ] into a uniformly spaced mesh with M + 2 nodes along the t
axis and N + 2 nodes along the y axis:

yi = y0 + i∆y = lnL + i
lnU − lnL

N + 1
, i = 0, . . . , N + 1, (76)

tj = j∆t = j
T

M + 1
, j = 0, . . . ,M + 1. (77)

This way the boundary conditions can be captured exactly, but the initial ex-
change rate value is most likely not a point in the mesh. To find the time zero
value of the range binary option we must interpolate between the two neighbor-
ing mesh points of the initial exchange rate. The next step is to introduce the
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following difference approximations of the partial derivatives of u. We abbreviate
ui,j , u(yi, tj) and approximate

ut(yi, tj) ≈
ui,j+1 − ui,j

∆t
, (78)

uy(yi, tj) ≈ (1−Θ)
ui+1,j − ui−1,j

2∆y
+ Θ

ui+1,j+1 − ui−1,j+1

2∆y
, (79)

uyy(yi, tj) ≈ (1−Θ)
ui+1,j − 2ui,j + ui−1,j

∆2
y

+ Θ
ui+1,j+1 − 2ui,j+1 + ui−1,j+1

∆2
y

, (80)

where the parameter Θ ∈ [0, 1] denotes the degree of explicitness. Common
values are

• Θ = 1 for the fully explicit finite-difference method,

• Θ = 0 for the fully implicit finite-difference method,

• Θ = 1
2 for the Crank–Nicholson scheme.

Plugging the finite difference approximations into Equation (71) yields for each
j = 0, . . . ,M the N linear equations

ui−1,j

(
−1

2
a(1−Θ)(σ2 −∆yµ)

)
+ ui,j(1 + rd∆t + a(1−Θ)σ2)

+ ui+1,j

(
−1

2
a(1−Θ)(σ2 + ∆yµ)

)
= ui−1,j+1

(1
2
aΘ(σ2 −∆yµ)

)
+ ui,j+1(1− aΘσ2) + ui+1,j+1

(1
2
aΘ(σ2 + ∆yµ)

)
,

i = 1, . . . , N . The boundary conditions translate into two more equations

(∆yαL + (1−Θ))u0,j − (1−Θ)u1,j = −Θ(u1,j+1 − u0,j+1),
(∆yαU + (1−Θ))uN+1,j − (1−Θ)uN,j = −Θ(uN+1,j+1 − uN,j+1).

We obtain for each j a tridiagonal system of N + 2 linear equations in the un-
knowns ui,j , i = 0, . . . , N +1, which can be solved efficiently using an algorithm,
e.g., from [22].

6 Summary

We have demonstrated by examples of digital, barrier and one-touch options how
the option valuation problem with leverage constrained hedging portfolios can
be solved. In some cases we provided closed form solutions, and in others have
described how to set up the appropriate finite-difference method for numerical
solution. The formulae provided here, as well as other formulae, are listed in the
section “Dangerous Digitals” at http://www.mathfinance.de, and an online
calculator there computes leverage constrained prices of reverse barrier options.

http://www.mathfinance.de
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A Appendix: The Maximum Principle

Theorem 4 (The Maximum Principle) (see, e.g., [19]). Suppose X is a
diffusion of the form dX(s) = a ds + σ dW (s) with second order differential
operator Au(t, x) , aux(t, x) + 1

2σ2uxx(t, x), g(t, x) ≥ 0 a potential, u(t, x) a
function satisfying u(T, x) ≥ 0 and −ut + rdu = Au + g. Then u(t, x) ≥ 0 for
all t ≤ T .

For a quick proof, use Itô’s rule to compute the differential

de−rdsu(s,X(s)) = e−rds[−rdu ds + us ds +Auds + σux dW (s)]

= e−rds[−g ds + σux dW (s)].
(81)

Now integrate between t and T and take expectations conditioned on X(t) = x
to get

Et,x
[
e−rdT u(T,X(T ))

]
= e−rdtu(t, x)− Et,x

[∫ T

t

e−rdsg(s,X(s)) ds

]
, (82)

which in turn implies

u(t, x) = Et,x
[
e−rd(T−t)u(T,X(T ))

]
+ Et,x

[∫ T

t

e−rd(s−t)g(s,X(s)) ds

]
. (83)

The assumed nonnegativity of both u(T, x) and g shows thus, that u(t, x) is
nonnegative as well. We used this for the case g = 0.
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[10] Cvitanić, J., Pham, H., and Touzi, N. (1999) Super-replication in
stochastic volatility models under portfolio constraints, J. Applied Probab.
36.
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